Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm giá trị nhỏ nhất của biểu thức: A = giá trị tuyệt đối của x- 2001 + giá trị tuyệt đối của x - 1.
|x-2001|+|x-1|=|x-2001|+|1-x|
BĐT gttđ:|a+b| > |a+b|
áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000
=>Amin=2000
dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000
A = |x + 1| + |y - 2| ≥ |x + 1 + y - 2|
= |x + y - 1|
= |2 - 1|
= 1
Vậy giá trị nhỏ nhất của A là 1
\(A=\left|x+1\right|+\left|y-2\right|\)
\(\Rightarrow A\le x+1+y-2\)
\(A\le x+y-1\)
\(A\le4\)
Vậy giá trị nhỏ nhất biểu thức A là 4.
A=|x-102|+|2-x|\(\ge\)|x-102+2-x|=|-100|=100
vậy minA=100 <=>|x-102|=0 hoặc |2-x|=0
<=>x-102=0 hoặc 2-x=0
<=> x=102 hoặc x=2
a) \(P=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)
*TH1: \(x< 2016\):
\(P=2016-x+2017-x+2018-x=6051-3x>6051-3\cdot2016=3\)
*TH2: \(2016\le x< 2017\):
\(P=x-2016+2017-x+2018-x=2019-x>2019-2017=2\)
*TH3: \(2017\le x< 2018\):
\(P=x-2016+x-2017+2018-x=x-2015\ge2017-2015=2\)(Dấu "=" xảy ra khi x = 2017)
*TH4: \(x\ge2018\):
\(P=x-2016+x-2017+x-2018=3x-6051\ge3\cdot2018-6051=3\)(Dấu "=" xảy ra khi x = 2018)
Vậy GTNN của P là 2 khi x = 2017.
b) \(x-2xy+y-3=0\)
\(\Leftrightarrow x\left(1-2y\right)+y-\frac{1}{2}-\frac{5}{2}=0\)
\(\Leftrightarrow2x\left(\frac{1}{2}-y\right)-\left(\frac{1}{2}-y\right)=\frac{5}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(\frac{1}{2}-y\right)=\frac{5}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=5\)
2x-1 | 5 | -5 | 1 | -1 |
1-2y | 1 | -1 | 5 | -5 |
x | 3 | -2 | 1 | 0 |
y | 0 | 1 | -2 | 3 |
=1003
có lẹ rứa