Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=3+\left|x-1\right|+\left|x+2\right|=3+\left|1-x\right|+\left|x+2\right|\ge3+\left|1-x+x+2\right|=3+3=6\)
Dấu "=" xảy ra khi: \(-2\le x\le1\)
\(H=3-\left|x-1\right|-\left|x+2\right|=3-\left(\left|x-1\right|+\left|x+2\right|\right)=3-\left(\left|1-x\right|+\left|x+2\right|\right)\le3-\left|1-x+x+2\right|=3-3=0\)Dấu "=" xảy ra khi: \(-2\le x\le1\)
Tìm GTLN hoặc GTNN của biểu thức M=3.x2+8
Trả lời:
Ta thấy x2>=0
=> M>=8
lấy đạo hàm M =>M'= 6x=0 tại x=0 (đạt cực trị tại x=0)
=> Biểu thức M có GTNN tại x=0 (lúc đó M=8)
Giả sử với x là số nguyên, GTLN của biểu thức là \(\infty\)
Để có GTNN thì x phải là số 0. Nếu x là số dương thì kết quả dương, còn nếu x là số âm thì kết quả cũng dương.
Khi đó M = 3 * 0^2 + 8 = 8
Trả lời:
1, A = | x - 3 | + 10
Vì \(\left|x-3\right|\ge0\forall x\)
nên \(\left|x-3\right|+10\ge10\forall x\)
Dấu = xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 10 khi x = 3
B = -7 + ( x + 1 )2
Vì \(\left(x+1\right)^2\ge0\forall x\)
nên \(-7+\left(x+1\right)^2\ge-7\forall x\)
Dấu = xảy ra khi x + 1 = 0 <=> x = -1
Vậy GTNN của B = -7 khi x = -1
2, C = -3 - | x + 2 |
Vì \(\left|x+2\right|\ge0\forall x\)
=> \(-\left|x+2\right|\le0\forall x\)
=> \(-3-\left|x+2\right|\le-3\forall x\)
Dấu = xảy ra khi x + 2 = 0 <=> x = -2
Vậy GTLN của C = -3 khi x = -2
D = 15 - ( x - 2 )2
VÌ \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(15-\left(x-2\right)^2\le15\forall x\)
Dấu = xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 15 khi x = 2
Ta có :/x-3/=/x+1-4/\(\le\)/x+1/+/4/ (bđt về GTTĐ)
nên M\(\le4\)
dấu = xảy ra \(\Leftrightarrow\left(x+1\right).\left(-4\right)\ge0\)
\(\Leftrightarrow x+1\le0\)
\(\Leftrightarrow x\le-1\)
vậy.....
GTLN của biểu thức |x-3|-|x-31|