Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(-\left|2x+6\right|\le0\)
\(\Rightarrow9-\left|2x+6\right|\le9\)
\(\Rightarrow5-\left(9-\left|2x+6\right|\right)\le5\)
Dấu "=" xảy ra <=> 2x + 6 = 9 <=> x = \(\frac{3}{2}\)
Vậy GTNN của A là 5 khi x = \(\frac{3}{2}\)
Bài 2:
Ta có: \(\left|2x+6\right|\ge0\)
\(\Rightarrow\left|2x+6\right|-3\ge-3\)
\(\Rightarrow-5-\left(\left|2x+6\right|-3\right)\ge-5\)
Dấu "=" xảy ra <=> 2x + 6 = 3 <=> x = \(-\frac{3}{2}\)
Vậy GTLN của A là -5 khi x = \(-\frac{3}{2}\)
Nhận thấy \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
=> \(\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\forall x\)
Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{6}\)
Vậy Min A = -1 <=> X = -1/6
a, \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\)
Dấu "=" xảy ra <=> 2x+1/3=0 <=> x= -1/6
\(\Rightarrow\left(x-1\right)^2-\left(2x-3\right)^2=0\\ \Rightarrow\left(x-1-2x+3\right)\left(x-1+2x-3\right)=0\\ \Rightarrow\left(2-x\right)\left(3x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{4}{3}\end{matrix}\right.\)
a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)
hay \(x=\dfrac{1}{6}\)
Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)
b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy: \(B_{min}=4\) khi x=2 và y=6
Bài 1:
Ta có: \(-\left|x\right|\le0\)
\(-\left(y-4\right)^4\le0\)
\(\Rightarrow-\left|x\right|-\left(y-4\right)^4\le0\)
\(\Rightarrow A=10-\left|x\right|-\left(y-4\right)^4\le10\)
Vậy \(MAX_A=10\) khi \(x=0;y=4\)
Bài 2:
Ta có: \(\left|2x+6\right|\ge0\)
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left|2x+6\right|+\left(x-y\right)^2\ge0\)
\(\Rightarrow B=\left|2x+6\right|+\left(x-y\right)^2-5\ge-5\)
Vậy \(MIN_B=-5\) khi \(x=-3;y=-3\)
bạn trả lời rõ hơn chỗ suy ra =>-|x|-(y-4)^4 và => |2x+6|+(x-y)^2 đc ko???
\(\left(x-7\right)\left(x+2019\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-7=0\\x+2019=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-2019\end{cases}}\)
\(9-25=\left(7-x\right)-\left(25+7\right)\)
\(\Leftrightarrow-16=7-x-25-7\)
\(\Leftrightarrow-x=-16+25\)
\(\Leftrightarrow-x=9\)
\(\Leftrightarrow x=-9\)
\(2\left(4x-2x\right)-7x=15\)
\(\Leftrightarrow4x-7x=15\)
\(\Leftrightarrow x=-5\)
a ) 9 - 25 = ( 7 - x ) - ( 25 + 7 )
9 - 25 = 7 - x - 25 - 7
9 - 25 - 7 + 25 + 7 = -x
9 = - x
=> x = -9
Vậy x = -9
b) 2 . ( 4x - 2x ) - 7x = 15
8x - 4x - 7x = 15
-3x = 15
x = 15 : ( - 3 )
x = -5
Vậy x = -5
c ) ( x - 7 ). ( x + 2019 ) = 0
=> x - 7 = 0 hoặc x + 2019 = 0
=> x = 7 hoặc x = - 2019
vậy x \(\in\){ 7 ; -2019 }