K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2022

1) \(B=-7x^2+9\)

Do \(x^2\ge0\forall x\Rightarrow-7x^2\le0\forall x\)

\(\Rightarrow B=-7x^2+9\le9\)

\(maxB=9\Leftrightarrow x=0\)

2) \(C=2-\left(3x-4\right)^4\)

Do \(\left(3x-4\right)^4\ge0\forall x\Rightarrow-\left(3x-4\right)^4\le0\forall x\)

\(\Rightarrow C=2-\left(3x-4\right)^4\le2\)

\(maxC=2\Leftrightarrow x=\dfrac{4}{3}\)

3) \(D=\dfrac{1}{2}x^2+3\)

Do \(\dfrac{1}{2}x^2\ge0\forall x\Rightarrow D=\dfrac{1}{2}x^2+3\ge3\)

\(minD=3\Leftrightarrow x=0\)

4) \(E=\dfrac{2016}{2-x^2+3}=\dfrac{2016}{-x^2+5}\)

Do \(x^2\ge0\forall x\Rightarrow-x^2+5\le5\forall x\)

\(\Rightarrow E=\dfrac{2016}{-x^2+5}\ge\dfrac{2016}{5}\)

\(minE=\dfrac{2016}{5}\Leftrightarrow x=0\)

7 tháng 2 2022

\(B=-7x^2+9\)

Vì \(-7x^2\le0\forall x\)

\(\Rightarrow-7x^2+9\le9\forall x\)

\(\Rightarrow B_{max}=9\Leftrightarrow-7x^2=0\Leftrightarrow x=0\)

\(C=2-\left(3x-4\right)^4\)

Vì \(-\left(3x-4\right)^4\le0\forall x\)

\(\Rightarrow-\left(3x-4\right)^4+2\le2\forall x\)

\(\Rightarrow C_{max}=2\Leftrightarrow-\left(3x-4\right)^4=0\Leftrightarrow x=\dfrac{4}{3}\)

Nếu tìm GTLN thì câu \(d\) là \(D=-\dfrac{1}{2}x^2+3\)

Vì \(-\dfrac{1}{2}x^2\le0\forall x\)

\(\Rightarrow-\dfrac{1}{2}x^2+3\le3\forall x\)

\(\Rightarrow D_{max}=3\Leftrightarrow-\dfrac{1}{2}x^2=0\Leftrightarrow x=0\)

\(E=\dfrac{2016}{2-x^2+3}=\dfrac{2016}{5-x^2}\)

Vì \(x^2\ge0\forall x\)

\(\Rightarrow5-x^2\le5\forall x\)

\(\Rightarrow E_{min}=5\Leftrightarrow x=\dfrac{2016}{5}\)

 

27 tháng 3 2016

gtln la 4032 khi x = 3

27 tháng 3 2016

ban giai thich cho minh voi

25 tháng 9 2018

gọi ý:

a,b biến đổi làm sao để:

a) áp dụng:  \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

b) áp dụng:  \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

c) Đánh giá:  \(\left|x-2015\right|^{2015}\ge0\)

                     \(\left(y-2016\right)^{2016}\ge0\)

=>  \(C\ge1\)khi  \(\hept{\begin{cases}x=2015\\y=2016\end{cases}}\)

25 tháng 9 2018

a ) A = | x - 5 | - | x - 7 |

Nhận xét :

| x - 5 | - | x - 7 | < | x - 5 - x + 7 |

=> A < | 2 |

=> A < 2

Dấu "=" xảy ra khi : ( x - 5  ) ( x - 7 ) > 0 

                            TH1 : \(\hept{\begin{cases}x-5>0\\x-7>0\end{cases}}\)

                                 => \(\hept{\begin{cases}x>5\\x>7\end{cases}}\)

                                    => x > 7

                             TH2 : \(\hept{\begin{cases}x-5< 0\\x-7< 0\end{cases}}\)

                                   => \(\hept{\begin{cases}x< 5\\x< 7\end{cases}}\)

                                      => x < 5

Vậy A lớn nhất bằng 2 khi x < 5 hoặc x > 7

b ) B = | 125 - x | + | x - 65 |

Ta có : 

| 125 - x | + | x - 65 | > | 125 - x + x - 65 |

=> B > | 60 |

=> B > 60

Dấu " = " xảy ra khi : ( 125 - x ) ( x - 65 ) > 0

TH1 : \(\hept{\begin{cases}125-x>0\\x-65>0\end{cases}}\)

=> \(\hept{\begin{cases}x< 125\\x>65\end{cases}}\)

=> 65 < x < 125

TH2 : \(\hept{\begin{cases}125-x< 0\\x-65< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>125\\x< 65\end{cases}}\)

=> 125 < x < 65 ( vô lí )

Vậy giá trị lớn nhất của B là 60 khi 65 < x < 125

c ) C = | x - 2015 |2015 + ( y - 2016 )2016 + 1

Nhận xét :

| x - 2015 |2015 > 0 với mọi x

( y - 2016 )2016 > 0 với mọi x

=> | x - 2015 |2015 + ( y - 2016 )2016 > 0 

=> | x - 2015 |2015 + ( y - 2016 )2016 + 1 > 1 

=> C > 1

Dấu "=" xảy ra khi : x - 2015 = 0

                               và y - 2016 = 0

=> x = 2015

      y = 2016

Vậy giá trị nhỏ nhất của C là 1 khi x = 2015 và y = 2016

27 tháng 2 2019

Ta có:

\(\left(\frac{1}{4}-2x\right)^2\ge0,\left|8x-1\right|\ge0\)

=> \(-\frac{1}{5}\left(\frac{1}{4}-2x\right)^2\le0,-\left|8x-1\right|\le0\)

=> \(C\le0+0\)+2016=2016

"=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{4}-2x=0\\8x-1=0\end{cases}\Leftrightarrow}x=\frac{1}{8}\)

Vậy C đạt giá trị lớn nhất là 2016 khi x=1/8

A=|3x-2016|-|3x+2016|<=|3x-2016-3x-2016|=4032

Dấu = xảy ra khi 3x-2016=-3x-2016

=>x=0