K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 10 2020

Lời giải:

1. Áp dụng BĐT $|a|-|b|\leq |a-b|$ ta có:

$A=|x-1004|-|x+1003|\leq |x-1004-(x+1003)|=2007$

Vậy $A_{\max}=2007$

Giá trị này đạt được khi $x\leq -1003$

2. Biểu thức có min không có max bạn nhé

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:

$A=|x-2|+|5-x|\geq |x-2+5-x|=3$

Vậy $A_{\min}=3$. Giá trị này đạt được khi $(x-2)(5-x)\geq 0$

$\Leftrightarrow 2\leq x\leq 5$

23 tháng 10 2020

dạ em cảm ơn ạ

14 tháng 12 2016

Ta có:

A = l x -1004l - lx+1003l

\(\Rightarrow\) A \(\ge\) l x-1004 - x-1003l = l(-1003)+(-1004)l = l-2007l = 2007

Dấu = xảy ra khi (x-1004).(x-1003) \(\ge0\)

\(\Rightarrow x-1004\ge0;x+1003\ge0\) hoặc \(x-1004\le0;x+1003\le0\)

\(\Rightarrow x\ge1004\) hoặc \(x\le-1003\)

Vậ GTLN của A là 2007 khi \(x\ge1004\) hoặc \(x\le1003\)

16 tháng 12 2016

mình chưa hiểu dòng 2

banhqua

9 tháng 3 2016

Ta có : 

|x+1004|-|x+1003|=|1004+x|-|x-1003|

                         <=|1004+x-x-1003|

                          =|1004-1003|

                          =|1|

                          =1

 Vậy : GTLN của biểu thức trên là 2015

20 tháng 4 2021

+)Xét x<−1003x<−1003 suy ra

{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004

Khi đó A=(−x+1004)−(−x−1003)=2007A=(−x+1004)−(−x−1003)=2007

+)Xét −1003≤x<1004−1003≤x<1004 suy ra

{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004

Khi đó A=(−x+1004)−(x+1003)=1−2xA=(−x+1004)−(x+1003)=1−2x

+)Xét x≥1004x≥1004 suy ra

{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003

Khi đó A=(x−1004)−(x+1003)=−2007A=(x−1004)−(x+1003)=−2007

Ta thấy: Với x<−1003x<−1003 thì A đạt giá trị lớn nhất là 2007

Vậy MaxA=2007MaxA=2007 khi x<−1003

26 tháng 12 2016

bằng 1 nha

26 tháng 12 2016

ÁP DỤNG BẤT ĐẲNG THỨC:|a|-|b|<=|a-b|

|x-1004|-|x+1003|<=|x-1004-x+1003|=1

vậy GTLN là 1

1 tháng 6 2019

+)Xét x<−1003x<−1003 suy ra

{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004

Khi đó A=(−x+1004)−(−x−1003)=2007A=(−x+1004)−(−x−1003)=2007

+)Xét −1003≤x<1004−1003≤x<1004 suy ra

{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004

Khi đó A=(−x+1004)−(x+1003)=1−2xA=(−x+1004)−(x+1003)=1−2x

+)Xét x≥1004x≥1004 suy ra

{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003

Khi đó A=(x−1004)−(x+1003)=−2007A=(x−1004)−(x+1003)=−2007

Ta thấy: Với x<−1003x<−1003 thì A đạt giá trị lớn nhất là 2007

Vậy MaxA=2007MaxA=2007 khi x<−1003

~ Học tốt ~

1 tháng 6 2019

Ta chứng minh: \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

\(\Leftrightarrow\left(\left|a\right|-\left|b\right|\right)^2\le\left(\left|a-b\right|\right)^2\)

\(\Leftrightarrow a^2-2\left|ab\right|+b^2\le a^2-2ab+b^2\)

\(\Leftrightarrow-\left|ab\right|\le-ab\)

\(\Leftrightarrow\left|ab\right|\ge ab\)(đúng) 

Dấu "=" khi ab > 0

Áp dụng:

\(A=\left|x-1004\right|-\left|x+1003\right|\)

\(\le\left|x-1004-x-1003\right|=2007\)

Dấu "=" khi \(\orbr{\begin{cases}x\ge1004\\x\le-1003\end{cases}}\)

10 tháng 2 2018

\(A=\left|x-1004\right|+\left|x-1003\right|\le\left|x-1004-x+1003\right|=1\)

Dấu "=" xảy ra khi: \(x\ge1004\)

16 tháng 2 2019

undefined

15 tháng 11 2017

Đặt A = |x-1004|-|x+1003|

Ta có: A = |x-1004| - |x+1003| \(\le\)|x-1004-x-1003| = |-2007| = 2007

Dấu "=" xảy ra khi \(x\le-1003\)

Vậy GTNN của A = 2007 khi x bé hoặc bằng -1003

+) \(5\frac{2}{3}x+1\frac{2}{3}=4\frac{1}{2}\Leftrightarrow\frac{17}{3}x+\frac{5}{3}=\frac{9}{2}\Leftrightarrow\frac{17}{3}x=\frac{17}{6}\Leftrightarrow x=\frac{1}{2}\)

+) \(\frac{x}{27}=\frac{-2}{9}\Leftrightarrow x=\frac{-2}{9}.27=-6\)

+) \(\left|x+1,5\right|=2\Leftrightarrow\orbr{\begin{cases}x+1,5=2\\x+1,5=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,5\\x=-3,5\end{cases}}}\)

+) \(A=\left|x-1004\right|-\left|x+1003\right|\)

Ta có BĐT \(\left|x\right|-\left|y\right|\le\left|x-y\right|,\)dấu "=" xảy ra khi và chỉ khi x,y cùng dấu hay \(xy\ge0\)

Áp dụng: \(A=\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|=\left|-2007\right|=2007\)

Vậy \(maxA=2007\Leftrightarrow\left(x-1004\right)\left(x+1003\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge1004\\x\le-1003\end{cases}}\)

17 tháng 2 2020

https://hoc24.vn/hoi-dap/question/216689.html

17 tháng 2 2020

Bạn tham khảo tại đây nhé: Câu hỏi của Vuong Ngoc Nguyen Ha (Gau Truc)

Chúc bạn học tốt!