K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2021

C = {x} _576+6967=986=79

11 tháng 8 2021

Có:\(\left|x\right|\ge0\)

\(\Rightarrow\left|x\right|+2017\ge2017\)

\(\Leftrightarrow\frac{\left|x\right|+2017}{2018}\ge\frac{0+2017}{2018}=\frac{2017}{2018}\)

Vậy GTNN của C =2017/2018 khi và chỉ khi x=0

11 tháng 8 2021

2017/2018 nha bạn

11 tháng 8 2021

\(C=|x|+\frac{2017}{2018}\)

vì \(|x|\ge0\forall x\)

\(\Rightarrow|x|+\frac{2017}{2018}\ge\frac{2017}{2018}\forall x\)\(\Rightarrow C\ge\frac{2017}{2018}\)

Dấu "=" xảy ra khi x=0

vậy \(Cmin=\frac{2017}{2018}\Leftrightarrow x=0\)

22 tháng 8 2019

                                                                Bài giải

Ta có : 

\(A=\frac{x+2017}{x+2018}=\frac{x+2018-1}{x+2018}=1-\frac{1}{x+2018}\)

??? Bạn ơi biểu thức trên rõ ràng là bé hơn 1 mà !

Trả lời

\(A=\frac{x+2017}{x+2018}\)

\(A=1+\frac{x-1}{x+2018}\)

Vì \(1\ge1\Rightarrow1+\frac{x-1}{x+2018}\ge1\forall x\)

Dấu " = " xảy ra 

\(\Leftrightarrow\frac{x-1}{x+2018}=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

Study well 

15 tháng 12 2019

\(A=\left|x-2019\right|-\left|x-2018\right|\)

Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)ta có :

\(A\ge\left|x-2019-x+2018\right|=\left|-1\right|=1\)

Vậy ................

15 tháng 12 2019

Nhầm Chỗ A 

Sửa thành \(A\le\left|x-2019-x+2018\right|=\left|-1\right|=1\)

1 tháng 1 2019

Dễ mà bạn

23 tháng 1 2019

đưa x ra làm nhân tử chug

DD
16 tháng 1 2021

1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất. 

mà \(\left|x-2016\right|+2018\ge2018\)

Dấu \(=\)khi \(x=2016\).

Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).

2) \(x-2xy+y=0\)

\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)

Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).