K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :
\(\sqrt{x^2-6x+9}=\sqrt{\left(x-3\right)^2}\)

Đến đây bạn làm như thường là đưcọ rồi

Chúc bạn học tốt

16 tháng 8 2018

\(=7-\sqrt{\left(x-3\right)^2}\le7\)

GTLN là 7

12 tháng 8 2016

GTLN là 0
<=> x=3

21 tháng 10 2018

\(A=5-\sqrt{x^2-6x+14}\)

   \(=5-\sqrt{\left(x^2-6x+9\right)+5}\)

  \(=5-\sqrt{\left(x-3\right)^2+5}\le5-\sqrt{5}\)

Dấu "=" <=> x-3=0

             <=> x=3

Vậy ....

9 tháng 4 2019

Không chắc lắm nha! Phần BĐT phụ mình có đc là nhờ sách nâng cao nên ms làm đc thôi!

Ta c/m BĐT phụ: \(\left|\sqrt{f^2+g^2}-\sqrt{h^2+k^2}\right|\le\sqrt{\left(f-h\right)^2+\left(g-k\right)^2}\) với f - h;g-k là hằng số. (1)

Bình phương hai vế,ta có: \(BĐT\Leftrightarrow f^2+g^2+h^2+k^2-2\sqrt{\left(f^2+g^2\right)\left(h^2+k^2\right)}\le f^2+h^2-2fh+g^2+k^2-2gk\)

\(\Leftrightarrow fh+gh\le\sqrt{\left(f^2+g^2\right)\left(h^2+k^2\right)}\) (2)

Nếu fh + gh < 0 thì (2) đúng

Nếu fh + gh >= 0 thì \(\left(2\right)\Leftrightarrow f^2h^2+g^2k^2+2fhgi\le f^2h^2+f^2k^2+g^2h^2+g^2k^2\)

\(\Leftrightarrow\left(fk-gh\right)^2\ge0\)(đúng)

Dấu "=" xảy ra fk = gh và fh + gk >= 0 (trích chứng minh BĐT ở sách 9 chuyên đề đại số THCS_ Vũ Hữu Bình)

Quay lại bài toán,ta có: \(P=\left|\sqrt{\left(x-2\right)^2+1^2}-\sqrt{\left(x+3\right)^2+2^2}\right|\)

\(\le\sqrt{\left(-5\right)^2+\left(1-2\right)^2}=\sqrt{25+1}=\sqrt{26}\)

Dấu "=" xảy ra khi 2(x-2) = 1(x+3) và (x-2)(x+3) + 1(x+3) >=0

Tức là x = 7 (t/m)

21 tháng 5 2019

\(\sqrt{x^2-4x+4}=\sqrt{\left(x-2\right)^2}\)

\(\sqrt{\left(x-2\right)^2}\ge0\Leftrightarrow-\sqrt{\left(x-2\right)^2}\le0\Leftrightarrow4-\sqrt{\left(x-2\right)^2}\le4\)

\(\Leftrightarrow A\le4\)

Vậy giá trị lớn nhất của A là 4 tại x = 2

21 tháng 5 2019

lộn đề kìa bạn

29 tháng 5 2021

\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)

\(A=\sqrt{x^2-6x+3^2}-\sqrt{x^2+6x+3^2}\)

\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)

b)\(\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}=1\)

\(TH1:x-3>=0\)

\(< =>x+3>=0\)

\(\left|x-3\right|-\left|x+3\right|=1\)

\(x-3-x-3=1\)

\(-6=1\)(loại)

\(TH2:x-3< =0\)

\(x+3>=0\)

\(< =>\left|x-3\right|-\left|x+3\right|=1\)

\(3-x-x-3\)

\(-2x=1\)

\(x=-\frac{1}{2}\left(TM\right)\)

\(TH3:x-3< =0\)

\(x+3< =0\)

\(< =>\left|x-3\right|-\left|x+3\right|=1\)

\(3-x+X+3=1\)

\(6=1\)(loại)

\(< =>x=\left\{\frac{1}{2}\right\}\)để \(A=1\)

22 tháng 10 2020

\(5-\sqrt{x^2-6x+14}=5-\sqrt{x^2-6x+9+5}\)

\(=5-\sqrt{\left(x-3\right)^2+5}\le5-\sqrt{5}\)

\(Max=5-\sqrt{5}\Leftrightarrow x=3\)

22 tháng 10 2020

ta có : \(\sqrt{x^2-6x+14}=\sqrt{\left(x-3\right)^2+5}\)\(\sqrt{5}\) ( vì \(\left(x-3\right)^2\) ≥ 0 với mọi x )

=> \(-\sqrt{x^2-6x+14}\)\(-\sqrt{5}\)

=> \(5-\sqrt{x^2-6x+14}\)\(5-\sqrt{5}\)

vậy GTLN = \(5-\sqrt{5}\) ; đạt được khi \(x-3\) = 0

<=> x = 3

*mik hongg bt đúng hongg nx :>*

11 tháng 12 2017

ta có

\(\sqrt{\left(x-5\right).1}\le\frac{x-5+1}{2}=\frac{x-4}{2}\)

\(\sqrt{\left(7-x\right).1}\le\frac{7-x+1}{2}=\frac{-x+8}{2}\)

\(\Rightarrow P\ge\frac{x-4}{2}+\frac{8-x}{2}=2\)

Dấu = xảy ra <=> \(\hept{\begin{cases}x-5=1\\7-x=1\end{cases}\Leftrightarrow x=6}\)

vậy min P=2 khi x=6