K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(A=\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)\)

\(\Rightarrow\left(2x+3y\right)^2\le13\cdot52\)

\(\Rightarrow\left(2x+3y\right)^2\le676\)

\(\Rightarrow2x+3y\le\sqrt{676}=26\)

Đẳng thức xảy ra khi \(x=-4;y=-6\) hoặc \(x=4;y=6\)

*Lưu ý:\(\left(\left|2x+3y\right|\right)^2=\left|2x+3y\right|^2=\left(2x+3y\right)^2\)

26 tháng 8 2018

Áp dụng BĐT Cauchy–Schwarz ta có:

\(A^2=\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=13.52=676\)

=>  \(-26\le A\le26\)

Vậy MAX   \(A=26\) khi   \(x=4;\)\(y=6\)

29 tháng 12 2015

\(A=\left|2x+3y\right|\Leftrightarrow A^2=\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=13.52=26^2\)

Max A = 26 khi .............

30 tháng 12 2015

CHTT nha bạn !

31 tháng 12 2015

Theo BTĐ  Bu - nhi - a - cốp - xki \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)  với  \(a=2\)  và  \(b=3\)

Ta có:   \(\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)\)

Với   \(x^2+y^2=52\)  thì   \(\left(2x+3y\right)^2\le\left(2^2+3^2\right).52\)  

\(\Rightarrow\)  \(\left(2x+3y\right)^2\le13.13.4\)

\(\Rightarrow\)  Giá trị tuyệt đối của  \(2x+3y\le26\)

  

Dấu \("="\)  xảy ra  \(\Leftrightarrow\)  \(\frac{x}{2}=\frac{y}{3}\)

Mặt khác, vì giá trị tuyệt đối của một số luôn không âm nên  \(2x+3y\ge0\)  hoặc \(2x+3y\le0\)

Do đó:  \(x=4\)  và  \(y=6\)  \(\left(t\text{/}m\right)\)   ;   \(x=-4\)  và  \(y=-6\)  \(\left(t\text{/}m\right)\)

Vậy,   \(Max\)  \(A=26\)   \(\Leftrightarrow\)  \(\left(x,y\right)\in\left\{\left(4,6\right);\left(-4,-6\right)\right\}\)

30 tháng 12 2015

Áp dụng bất đẳng thức bunhiakopski vào e ơi

1 tháng 1 2020

1. 

\(D=\frac{2\left|x\right|+3}{3\left|x\right|-1}\)

\(\hept{\begin{cases}\left|x\right|\ge0\Rightarrow2\left|x\right|+3\ge3\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|-1\ge-1\end{cases}}\)

MaxD = Min3|x| -1

\(3\left|x\right|-1\in Z^+\)

\(\Rightarrow3x-1=1\)

\(\Rightarrow3x=2\Rightarrow x=\frac{2}{3}\)

\(\Rightarrow Max_D=\frac{2\left|\frac{2}{3}\right|+3}{3.\left|\frac{2}{3}\right|-1}=\frac{13}{\frac{3}{1}}=\frac{13}{3}\)

2:

Theo đề bài là:

\(\frac{x}{y}=\frac{7}{3};x-y=16\)

\(\frac{\Rightarrow x}{3}=\frac{y}{7};x-y=16\)

Áp dụng tính chất dãy tỉ số = ta có:

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)

\(\frac{x}{3}=-4\)

\(\Rightarrow\hept{\begin{cases}x=-4.3\\x=-12\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y=-4.7\\y=-28\end{cases}}\)

Vậy x = -12

y = -28

11 tháng 7 2017

a. \(2x\left(x-5\right)-x\left(2x+3\right)=26\Rightarrow2x^2-10x-2x^2-3x=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

b. \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)

\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3=\frac{5}{2}\)\(\Rightarrow2y=\frac{7}{2}\Rightarrow y=\frac{7}{4}\)

c. \(2x^2+3\left(x+1\right)\left(x-1\right)=5x^2+5x\Rightarrow5x^2-3=5x^2+5x\)

\(\Rightarrow x=-\frac{3}{5}\)

12 tháng 7 2017

cảm ơn bạn nhiều nhé 

kb vs mình đi