Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.B= -(x^2 - 4x - 3)
= -(x^2 - 2x2 + 4 - 7)
= -(x - 2)^2 + 7 ≤ 7
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
=>Amax = 7 khi x=2
2. chịu tự đi mà làm ngốc thật
2.ĐK: \(x\ne-1\)
\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2+\left(x+1\right)^2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\ge1\forall x\)
Dấu "=" xảy ra khi: \(x-1=0\Rightarrow x=1\)
Vậy GTNN của Q là 1 khi x = 1
1. \(B=4x-x^2+3=-x^2+4x-4+7=-\left(x-2\right)^2+7\le7\forall x\)
Dấu "=" xảy ra khi \(x-2=0\Rightarrow x=2\)
Vậy GTLN của B là 7 khi x = 2
\(A=\frac{3}{2x^2+2x+3}=\frac{3}{2x^2+2x+\frac{1}{2}+\frac{5}{2}}\)
\(=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Nên GTLN của A là \(\frac{6}{5}\) khi \(x=-\frac{1}{2}\)
Ta có: \(A=\frac{3}{2x^2+2x+3}\)
\(A=\frac{3}{2x^2+2x+\frac{1}{2}+\frac{5}{2}}\)
\(A=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}\)
\(A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}\)
\(A=\frac{6}{5}\)
Nên GTLN của A là \(\frac{6}{5}\) khi \(x=-\frac{1}{2}\)
a) \(2x^2+2x+5=2\left(x^2+2.\frac{1}{2}x+\frac{1}{4}\right)+5-\frac{2}{4}\)
\(=2\left[\left(x+\frac{1}{2}\right)^2\right]+\frac{9}{2}\)
=> Giá trị nhỏ nhất của biểu thức bằng \(\frac{9}{2}\) khi \(x=-\frac{1}{2}\)
b) Biểu thức câu b trái dấu với biểu thức câu a nên ta suy ra giá trị lớn nhất của biểu thức câu b là \(-\frac{9}{2}\)
a, \(M=\frac{3\left(x^2+1\right)}{\left(x^4+x^2\right)+\left(2x^3+2x\right)+\left(6x^2+6x\right)}=\frac{3\left(x^2+1\right)}{x^2\left(x^2+1\right)+2x\left(x^2+1\right)+6\left(x^2+1\right)}=\frac{3\left(x^2+1\right)}{\left(x^2+2x+6\right)\left(x^2+1\right)}=\frac{3}{x^2+2x+6}\)
b, ta có: \(M=\frac{3}{x^2+2x+6}=\frac{3}{\left(x^2+2x+1\right)+5}=\frac{3}{\left(x+1\right)^2+5}\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+5\ge5\Rightarrow\frac{1}{\left(x+1\right)^2+5}\le\frac{1}{5}\Rightarrow M=\frac{3}{\left(x+1\right)^2+5}\le\frac{3}{5}\)
Dấu "=" xảy ra <=>x+1=0 <=> x=-1
\(A=\frac{3x+1}{2x^2-x+3}\)
\(A=\frac{2x^2-x+3-2x^2+4x-2}{2x^2-x+3}\)
\(A=\frac{\left(2x^2-x+3\right)-2\left(x^2-2x+1\right)}{2x^3-x+3}\)
\(A=1-\frac{2\left(x-1\right)^2}{2x^2-x+3}\)
\(A=1-\frac{2\left(x-1\right)^2}{2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{23}{8}}\)
\(A=1-\frac{2\left(x-1\right)^2}{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\le1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(x-\frac{1}{4}\right)^2\ge0\forall x\end{cases}\Rightarrow\frac{2\left(x-1\right)^2}{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge0\forall x}\)
Dấu '' = '' xảy ra khi x = 1
Vậy Max A =1 khi x = 1 .
Ta có: \(A=\frac{2x^2-16x+33}{x^2-8x+17}=\frac{\left(2x^2-16x+34\right)-1}{x^2-8x+17}\)
\(=2-\frac{1}{x^2-8x+17}\)
Ta thấy rằng A bé nhất khi x2 - 8x + 17 bé nhất
x2 - 8x + 17 = (x2 - 8x + 16) + 1 = (x - 4)2 + 1\(\ge1\)
=> x2 - 8x + 17 bé nhất = 1 khi x = 4
Vậy A bé nhất bằng 2 - 1 = 1 khi x = 4
\(A=\frac{3}{2x^2+2x+3}=\frac{3}{\left(2x^2+2x+\frac{1}{2}\right)+\frac{5}{2}}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}\)
\(A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(2\left(x+\frac{1}{2}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-1}{2}\)
Vậy GTLN của \(A\) là \(\frac{6}{5}\) khi \(x=\frac{-1}{2}\)
Chúc bạn học tốt ~