K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2015

x+y-x+6y+10= x2-x+\(\frac{1}{4}\)+y2+6y+9+\(\frac{3}{4}\)=(x-\(\frac{1}{2}\))2+(y+3)2+\(\frac{3}{4}\) ≥\(\frac{3}{4}\)

Daauus bằng xảy ra khi và chỉ khi x=\(\frac{1}{2}\) và y= -3

Suy ra Min= \(\frac{3}{4}\)

23 tháng 7 2015

xét x2  + y- x + 6y + 10

= ( x2 - 2 . x .1/2 + 1/4) + ( y2 + 2 .y .3 + 9) + 3/4

= (x + 1/2)2 + (y + 3)2 + 3/4

Vì (x + 1/2) 2 > 0 vói mọi x

( y + 3)2 > vưới mọi x

3/4 > 0

=> (x + 1/2)2 + (y+3)2 + 3/4

=> M có GTNN là 3/4 <=> (x+1/2)= 0 -> x + 1/2=0 -> x = -1/2

và (y + 3)2 = 0 -> y +3 = 0 -> y =-3

Vậy M có GTNN là 3/4 khi x = -1/2 và y =-3

 

 

đấy là 1 cahs tách cậu có thể tìm và tham khảo các cách khác : '> đừng thụ động quá nhé

 

7 tháng 4 2016

giup minh voi nhanh len:)

7 tháng 4 2016

x^3+y^3=(x+y)^3-3xy(x+y)

             =27-9xy

Mà (x+y)^2 lớn hơn hoặc bằng 4xy

=>9 lớn hơn hoặc bằng 4xy (x+y=3)

=>81/4 lớn hơn hoặc bằng 9xy (nhân 2 vế với 9/4)

Dấu "=" xảy ra khi x=y= căn 9/4 = 3/2

Vậy GTNN của biểu thức trên là 27 - 81/4 = 27/4 khi x=y=3/2

MÌnh nghĩ như vậy ko biết đúng ko???

8 tháng 11 2015

\(M=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge0+1=1\)

\(Mmin=1\) khi x+2 = 0 => x = -2

8 tháng 11 2015

M=x2 +4x +5

=>M=x(x+4)+5

Ta có:

x(x+4) lớn hơn hoặc bằng 0

=>x(x+4)+5 lớn hơn hoặc bằng 5

=>M lớn hơn hoặc bằng 5

Dấu "=" xảy ra <=> x = 0 hoặc x+4=0 => x= - 4

Vậy M đạt GTNN là 5 <=> x=0 hoặc x= -4

 

23 tháng 9 2017

\(Q=2x^2-6x\)

\(Q=2.(x^2 - 2.\dfrac{3}{2}.x+\dfrac{9}{4}\text{)}-\dfrac{9}{2} \)

\(Q=2.(x-\dfrac{3}{2})^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\)

\(\Rightarrow Min_A=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}\) .

\(M=x^2+y^2-x+6y+10\)

\(M=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)

\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow Min_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3.\)

27 tháng 7 2017

\(P=\frac{x^2-2x+1989}{x^2}\)

\(\Leftrightarrow Px^2=x^2-2x+1989\)

\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)

\(\Delta=4-4\left(1-P\right)1989\ge0\)

\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1989\)

Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989