Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(tan\alpha=x\Rightarrow cot\alpha=\frac{1}{x}\)
Ta có : \(tan\alpha+cot\alpha=2\)
\(\Leftrightarrow x+\frac{1}{x}=2\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy \(tan\alpha=1\Rightarrow\alpha=45^o\)(thỏa mãn)
`sin α=cos α`
`<=> sinα : cosα = cosα : cosα`
`<=> tanα=1`
`<=>α=45^o`
Lời giải:
Xét tam giác $ABC$ vuông tại $A$ có $\widehat{B}=\alpha$
$\cos \alpha = \frac{AB}{BC}$
$\sin \alpha = \frac{AC}{BC}$
$\cos \alpha = \sin \alpha \Leftrightarrow AB=AC\Leftrightarrow ABC$ là tam giác vuông cân
$\Leftrightarrow \widehat{B}=\widehat{C}=45^0$
Vậy $\alpha = 45^0$
\(\sin^2\alpha+\cos^2\alpha=1\\ \Rightarrow\cos^2\alpha=1-0,6^2=0,64\\ \Rightarrow\cos\alpha=0,8=\dfrac{4}{5}\\ \tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{0,6}{0,8}=\dfrac{3}{4}\\ \cot\alpha=\dfrac{1}{\tan\alpha}=\dfrac{1}{0,75}=\dfrac{4}{3}\)
Vì \(\tan\alpha\cdot\cot\alpha=1\Leftrightarrow\cot\alpha=\dfrac{1}{2,15}=\dfrac{20}{43}\)
5cos2a + 3sin2a = 4.5
-> 5(1 - sin2a) + 3sin2a = 4.5
-> 5 - 5sin2a + 3sin2a = 4.5
-> 2sin2a = 0.5
-> sin2a = 0.25
-> sin a = √0.25
-> a = 30
Vậy : Góc a bằng 30 độ