K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

Ta có : E = 2x+ y2 + 2xy - 8x + 2028

=> E = x2 + 2xy + y2 + (x2 - 8x + 16) + 2008

=> E = (x + y)2 + (x - 4)2 + 2008

Vì (x + y)2 + (x - 4)2 \(\ge0\forall x,y\in R\)

Nên : E = (x + y)2 + (x - 4)2 + 2008 \(\ge2008\forall x,y\in R\)

Vậy Emin = 2008 khi x - 4 = 0 => x = 4 ; x + y = 0 => 4 + y = 0 => y = -4 

21 tháng 9 2017

\(E=2x^2+y^2+2xy-8x+2028\)

\(E=x^2+2xy+y^2+x^2-8x+16+2012\)

\(E=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)

Đẳng thức xảy ra \(\Leftrightarrow x+y=0\)và \(x-4=0\Leftrightarrow x=4;y=-4\)

Giá trị nhỏ nhất của E là : \(2012\Leftrightarrow x=4;y=-4\)

Vậy : Giá trị nhỏ nhất của E là : 2012

21 tháng 9 2017

E = x^2 + y^2 + 2xy + x^2 - 8x + 16 + 2012

=> E = (x + y)^2 + (x - 4)^2 + 2012

=> E nhỏ nhất bằng 2012 <=> x = 4 ; y = -4 

21 tháng 9 2016

B=(x2+2,x,y+y2)+(x2-2.x.4+42)+2012

B=(x+y)2+(x-4)2+2012

   (x+y)2 lớn hoăc bằng 0 (mình ko ghi dc ki hiệu)

  (x-4)lớn hoăc bằng 0 (mình ko ghi dc ki hiệu)

=>(x+y)2+(x-4)2+2012 lớn hoăc bằng 2012

Dấu = xảy ra khi x+y=0 => x=-4

                          x-4=0 => x=4

13 tháng 12 2017

a, Tìm GTNN

\(A=2x^2+y^2+2xy-8x+2028\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+16\right)+2012\)

\(=\left(x+y\right)^2+\left(x-4\right)^2+2012\)

Ta có :

\(\left(x+y\right)^2\ge0\) với mọi x

\(\left(x-4\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)

Dấu = xảy ra

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+y\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\)

Vậy \(Min_A=2012\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\)

13 tháng 12 2017

A=2x2+y2+2xy-8x+2028=(x2+2xy+y2)+(x2-8x+16)+2012=(x+y)2+(x-4)2+2012

Vì (x+y)2\(\ge\)0\(\forall\)x,y

(x-4)2\(\ge0\forall x\)

=>(x+y)2+(x-4)2\(\ge0\)

=>(x+y)2+(x-4)2+2012\(\ge2012\forall x,y\)

Đạt được khi và chỉ khi:

\(\left\{{}\begin{matrix}x-4=0\rightarrow x=4\\x+y=0\rightarrow y=-4\end{matrix}\right.\)

Vậy Amin=2012<=>x=4,y=-4

a,   B=x2+4xy+y2+x2-8x+16+2012

       B=(x+y) 2+(x-4)2+2012

 Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)

b làm tương tự 

c,  9x2+6x+1+y2-4y+4+x2-4xz+4z2=0

     (3x+1)2+(y-4)2+(x-2z)2=0

    Vậy 3x+1=0 => x = -1/3

           y-4=0 => y=4

             x-2z=0  thế x=-1/3 ta được.      -1/3-2z=0 => z = -1/6

Bạn nhớ ghi lại đề minh không ghi đề 

           

a) \(B=2x^2+y^2+2xy-8x+2028\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)

\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)

b)\(C=x^2+5y^2+4xy+2x+2y-7\)

\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)

\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)

\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)

\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)

25 tháng 11 2016

mấy bn ơi, giúp mk nhanh vs nha!!!!!!!!!!!

25 tháng 11 2016

a/ A = 2x2 + y2 - 2xy - 2x + 3

= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2

= (x - y)2 + (x - 1)2 + 2\(\ge2\)

7 tháng 8 2018

I don't know

...................

Sorry !

19 tháng 2 2018

a, A=2x2+y2-2xy-2x+3

= (x2-2xy+y2)+(2x2-2x+2)+1

=(x-y)2+2(x-1)2+1

vì (x-y)2 ≥0 ∀x,y

(x-1)2 ≥ 0 ∀x

=> (x-y)2+2(x-1)2+1 ≥1 ∀x,y

=> A ≥1

= > GTNN A = 1 khi

x-1=0

=> x=1

x-y=0

=> 1-y=0

=> y=1

vậy GTNN A =1 khi x=y=1

24 tháng 9 2019

\(E=2x^2+y^2-2xy-8x+24\)

\(=x^2+x^2+y^2-2xy-8x+16+8\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2-8x+16\right)+8\)

\(=\left(x-y\right)^2+\left(x-4\right)^2+8\)

Vậy \(E_{min}=8\Leftrightarrow x=y=4\)

Bài làm

E = 2x2 + y2 - 2xy - 8x + 24

E = ( x2 - 2xy + y2 ) + ( x2 - 8x + 16 ) + 8

E = ( x2 - 2xy + y2 ) + ( x2 - 2.4x + 42 ) + 8

E = ( x - y )2 + ( x - 4 )2 + 8 > 8

Dấu " = " xảy ra <=> E = 8

                          <=> x = 4; y = 4

Vậy E nhận giá trị nhỏ nhất là 8 khi x = 4 và y = 4

# Học tốt #