Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+y^2+2xy+60+8x+8y\)
\(=\left(x^2+y^2+2xy\right)+8x+8y+16+y^2+44\)
\(=\left(x+y\right)^2+2\left(x+y\right).4+16+y^2+44\)
\(=\left(x+y+4\right)^2+y^2+44\)
Vì \(\hept{\begin{cases}\left(x+y+4\right)^2\ge0\forall x\\y^2\ge0\forall y\end{cases}}\)
\(\Rightarrow A\ge44\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+4=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=0\end{cases}}\)
Vậy \(minA=44\Leftrightarrow\hept{\begin{cases}x=-4\\y=0\end{cases}}\)
\(A=-x^2-4x-2\)
\(\Leftrightarrow-A=x^2+4x+2\)
\(\Leftrightarrow-A=x^2+4x+4-2\)
\(\Leftrightarrow-A=\left(x+2\right)^2-2\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-2\ge-2\)hay \(-A\ge-2\)
\(\Rightarrow A\le2\)
Vậy GTLN của A là 2\(\Leftrightarrow x=-2\)
1. a) 2x2 - 8x
= 2x(x - 4)
b) x2 - xy + x - y
= x(x - y) + (x - y)
= (x + 1)(x - y)
2. a) Ta có M = x2 + 5y2 + 4xy + 4y + 11
= (x2 + 4xy + 4y2) + (y2 + 4y + 4) + 7
= (x + 2y)2 + (y + 2)2 + 7 \(\ge7\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2y=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2y\\y=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=-2\end{cases}}\)
Vậy Min M = 7 <=> x = 4 ; y = -2
\(E=2x^2+y^2-2xy-8x+24\)
\(=x^2+x^2+y^2-2xy-8x+16+8\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2-8x+16\right)+8\)
\(=\left(x-y\right)^2+\left(x-4\right)^2+8\)
Vậy \(E_{min}=8\Leftrightarrow x=y=4\)
Bài làm
E = 2x2 + y2 - 2xy - 8x + 24
E = ( x2 - 2xy + y2 ) + ( x2 - 8x + 16 ) + 8
E = ( x2 - 2xy + y2 ) + ( x2 - 2.4x + 42 ) + 8
E = ( x - y )2 + ( x - 4 )2 + 8 > 8
Dấu " = " xảy ra <=> E = 8
<=> x = 4; y = 4
Vậy E nhận giá trị nhỏ nhất là 8 khi x = 4 và y = 4
# Học tốt #