Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)\(\frac{x+2}{x+3}+\frac{x-1}{x+1}=\frac{2}{x^2+4x+3}+1\)
\(\Rightarrow\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}\)
\(\Rightarrow\)\(x^2+3x+2+x^2-2x-3=2+x^2+4x+3\)
\(\Rightarrow x^2-3x-6=0\)
.....
\(\frac{x+1}{x-2}+\frac{2x-1}{x-1}=\frac{2}{x^2-3x+2}+\frac{11}{2}\)
\(\Rightarrow\frac{2\left(x+1\right)\left(x-1\right)}{2\left(x-2\right)\left(x-1\right)}+\frac{2\left(2x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)\(=\frac{4}{2\left(x-1\right)\left(x-2\right)}+\frac{22\left(x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)
\(\Rightarrow2x^2-2+4x^2-10x+4=4+22x^2-66x+44\)
.....
\(\frac{x^2-36}{2x+10}\cdot\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2x+10}\cdot\frac{3}{6-x}=-\frac{3\left(x+6\right)}{2x+10}=-\frac{3x+18}{2x+10}\)
\(\frac{x^2-4}{x^2-9}\cdot\frac{3x+9}{x+2}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{3\left(x+3\right)}{x+2}=\frac{3\left(x-2\right)}{x-3}\)
\(\frac{x^3-8}{5x+20}\cdot\frac{x^2+4x}{x^2+2x+4}=\frac{\left(x-2\right)\left(x^2+2x+4\right)}{5\left(x+4\right)}\cdot\frac{x\left(x+4\right)}{x^2+2x+4}=\frac{x\left(x-2\right)}{5}\)
\(\frac{4x+12}{\left(x+4\right)^2}:\frac{3x+9}{x+4}=\frac{4\left(x+3\right)}{\left(x+4\right)^2}\cdot\frac{x+4}{3\left(x+3\right)}=\frac{4}{3\left(x+4\right)}\)
\(A=\frac{1}{4}\left(x+2\right)^2-2\ge-2\)
\(A_{min}=-2\) khi \(x=-2\)
Với 2 câu B, C cần kiến thức lớp 9 để làm:
\(Bx^2+2Bx+3B=x^2-2x+2\)
\(\Leftrightarrow\left(B-1\right)x^2+2\left(B+1\right)x+3B-2=0\)
\(\Delta'=\left(B+1\right)^2-\left(B-1\right)\left(3B-2\right)\ge0\)
\(\Leftrightarrow2B^2-7B+1\le0\Rightarrow\frac{7-\sqrt{41}}{4}\le B\le\frac{7+\sqrt{41}}{4}\)
\(B_{min}=\frac{7-\sqrt{41}}{4}\) khi \(x=\frac{\sqrt{41}-1}{4}\)
\(2Cx^2+4Cx+9C=x^2-2x-1\)
\(\Leftrightarrow\left(2C-1\right)x^2+2\left(2C+1\right)x+9C+1=0\)
\(\Delta'=\left(2C+1\right)^2-\left(2C-1\right)\left(9C+1\right)\ge0\)
\(\Leftrightarrow14C^2-11C-2\le0\Rightarrow\frac{11-\sqrt{233}}{28}\le C\le\frac{11+\sqrt{233}}{28}\)
\(C_{min}=\frac{11-\sqrt{233}}{28}\) khi \(x=\frac{\sqrt{233}-11}{8}\)
\(\frac{4}{2x+3}-\frac{7}{3x-5}=0\left(đkxđ:x\ne-\frac{3}{2};\frac{5}{3}\right)\)
\(< =>\frac{4\left(3x-5\right)}{\left(2x+3\right)\left(3x-5\right)}-\frac{7\left(2x+3\right)}{\left(2x+3\right)\left(3x-5\right)}=0\)
\(< =>12x-20-14x-21=0\)
\(< =>2x+41=0< =>x=-\frac{41}{2}\left(tm\right)\)
\(\frac{4}{2x-3}+\frac{4x}{4x^2-9}=\frac{1}{2x+3}\left(đk:x\ne-\frac{3}{2};\frac{3}{2}\right)\)
\(< =>\frac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{4x}{\left(2x-3\right)\left(2x+3\right)}-\frac{2x-3}{\left(2x+3\right)\left(2x-3\right)}=0\)
\(< =>8x+12+4x-2x+3=0\)
\(< =>10x=15< =>x=\frac{15}{10}=\frac{3}{2}\left(ktm\right)\)
\(\frac{2x^2+4x+9}{x^2+2x+4}=\frac{6x^2+12x+27}{3\left(x^2+2x+4\right)}=\frac{7\left(x^2+2x+4\right)-x^2-2x-1}{3\left(x^2+2x+4\right)}=\frac{7}{3}-\frac{\left(x+1\right)^2}{3\left(x+1\right)^2+9}\le\frac{7}{3}\)
Dấu "=" xảy ra khi \(x=-1\)
Ta thấy \(\left(x-3\right)\left(2x+3\right)=2x^2-3x-9.\)
\(\left(1\right)\Leftrightarrow\frac{x}{x-3}-\frac{2x^2+9}{\left(x-3\right)\left(2x+3\right)}=\frac{1}{2x+3}\)
ĐK: \(x\ne3\)và \(x\ne-\frac{3}{2}\)
\(\Rightarrow x\left(2x+3\right)-2x^2-9=x-3\)
\(\Leftrightarrow2x^2+3x-2x^2-9=x-3\Leftrightarrow2x=6\Leftrightarrow x=2\)
Thỏa mãn ĐK
Các trường hợp khác làm tương tự
a ) MTC : \(2x\left(x+3\right)\left(x-3\right)\)
\(\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{3-2x}{x^2-9}=\frac{3-2x}{\left(x-3\right)\left(x+3\right)}=\frac{2x\left(3-2x\right)}{2x\left(x+3\right)\left(x-3\right)}\)
b ) MTC : \(2\left(-x\right)\left(x-1\right)^2\)
\(\frac{2x-1}{x-x^2}=\frac{2x-1}{-x\left(x-1\right)}=\frac{2\left(2x-1\right)\left(x-1\right)}{2\left(-x\right)\left(x-1\right)^2}\)
\(\frac{x+1}{2-4x+2x^2}=\frac{x+1}{2\left(x^2-2x+1\right)}=\frac{-x\left(x+1\right)}{2\left(-x\right)\left(x-1\right)^2}\)