K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{5-x}-\sqrt[3]{x^2+7}}{x^2-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{5-x}-2+2-\sqrt[3]{x^2+7}}{x^2-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{5-x-4}{\sqrt{5-x}+2}+\dfrac{8-x^2-7}{4+2\sqrt[3]{x^2+7}+\sqrt[3]{\left(x^2+7\right)^2}}}{x^2-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1-x}{\sqrt{5-x}+2}+\dfrac{1-x^2}{4+2\sqrt[3]{x^2+7}+\sqrt[3]{\left(x^2+7\right)^2}}}{x^2-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(1-x\right)\left(\dfrac{1}{\sqrt{5-x}+2}+\dfrac{1+x}{4+2\sqrt[3]{x^2+7}+\sqrt[3]{\left(x^2+7\right)^2}}\right)}{-\left(1-x\right)\left(1+x\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{\sqrt{5-x}+2}+\dfrac{1+x}{4+2\sqrt[3]{x^2+7}+\sqrt[3]{\left(x^2+7\right)^2}}}{-\left(1+x\right)}\)

\(=\dfrac{\dfrac{1}{\sqrt{5-1}+2}+\dfrac{1+1}{4+2\cdot\sqrt[3]{1^2+7}+\sqrt[3]{\left(1+7\right)^2}}}{-\left(1+1\right)}\)

\(=\dfrac{\dfrac{1}{2+1}+\dfrac{2}{4+2\cdot2+4}}{-2}\)

\(=\dfrac{\dfrac{1}{3}+\dfrac{1}{6}}{-2}=-\dfrac{1}{4}\)

b: \(\lim\limits_{x\rightarrow4}\dfrac{x^2-4x}{x^2+x-20}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{x\left(x-4\right)}{x^2+5x-4x-20}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{x\left(x-4\right)}{\left(x+5\right)\left(x-4\right)}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{x}{x+5}=\dfrac{4}{4+5}=\dfrac{4}{9}\)

a: \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-\sqrt{5-x^2}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-2+2-\sqrt{5-x^2}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x+7-8}{\sqrt[3]{\left(x+7\right)^2}+2\cdot\sqrt[3]{x+7}+4}+\dfrac{4-5+x^2}{2+\sqrt{5-x^2}}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x-1}{\sqrt[3]{\left(x+7\right)^2}+2\cdot\sqrt[3]{x+7}+4}+\dfrac{x^2-1}{2+\sqrt{5-x^2}}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(\dfrac{1}{\sqrt[3]{\left(x+7\right)^2}+2\cdot\sqrt[3]{\left(x+7\right)}+4}+\dfrac{x+1}{2+\sqrt{5-x^2}}\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{1}{\sqrt[3]{\left(x+7\right)^2}+2\cdot\sqrt[3]{x+7}+4}+\dfrac{x+1}{2+\sqrt{5-x^2}}\)

\(=\dfrac{1}{\sqrt[3]{\left(1+7\right)^2}+2\cdot\sqrt[3]{1+7}+4}+\dfrac{1+1}{2+\sqrt{5-1^2}}\)

\(=\dfrac{1}{4+2\cdot2+4}+\dfrac{2}{2+2}\)

\(=\dfrac{1}{12}+\dfrac{1}{2}=\dfrac{7}{12}\)

b: \(\lim\limits_{x\rightarrow5}\dfrac{x-5}{\sqrt{x}-\sqrt{5}}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)}{\sqrt{x}-\sqrt{5}}\)

\(=\lim\limits_{x\rightarrow5}\sqrt{x}+\sqrt{5}=\sqrt{5}+\sqrt{5}=2\sqrt{5}\)

a: \(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt[3]{x}-x}{x^2-x}\)

\(=\dfrac{\sqrt[3]{-1}-\left(-1\right)}{\left(-1\right)^2-\left(-1\right)}\)

\(=\dfrac{-1+1}{1+1}=\dfrac{0}{2}=0\)

b: \(\lim\limits_{x\rightarrow1}\dfrac{x^3-x^2-x+1}{x^3-3x+2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x^3-x^2\right)-\left(x-1\right)}{x^3-x-2x+2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{x^2\left(x-1\right)-\left(x-1\right)}{x\left(x^2-1\right)-2\left(x-1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x^2-1\right)}{x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)}{\left(x-1\right)\left(x^2+x-2\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+x-2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2x-x-2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+2\right)\left(x-1\right)}=\lim\limits_{x\rightarrow1}\dfrac{x+1}{x+2}=\dfrac{1+1}{1+2}=\dfrac{2}{3}\)

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{3-\sqrt{x^2+7}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}}{\dfrac{3}{x}-\sqrt{1+\dfrac{7}{x^2}}}\)

\(=\dfrac{1}{0-\sqrt{1+0}}=\dfrac{1}{-1}=-1\)

b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-x}-\sqrt{4x^2+1}}{2x+3}\)

\(=\dfrac{\sqrt{x^2\left(1-\dfrac{1}{x}\right)}-\sqrt{x^2\left(4+\dfrac{1}{x^2}\right)}}{2x+3}\)

\(=\dfrac{-x\cdot\sqrt{1-\dfrac{1}{x}}+x\cdot\sqrt{4+\dfrac{1}{x^2}}}{x\left(2+\dfrac{3}{x}\right)}\)

\(=\dfrac{-\sqrt{1-\dfrac{1}{x}}+\sqrt{4+\dfrac{1}{x^2}}}{2+\dfrac{3}{x}}=\dfrac{-1+2}{2}=\dfrac{1}{2}\)

a: \(\lim\limits_{x\rightarrow2}\dfrac{1-\sqrt{x^2+3}}{-x^2+3x-2}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+3}-1}{x^2-3x+2}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\sqrt{2^2+3}-1}{2^2-3\cdot2+2}\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow2}\sqrt{2^2+3}-1=\sqrt{7}-1>0\\\lim\limits_{x\rightarrow2}2^2-3\cdot2+2=0\end{matrix}\right.\)

 

b: \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{4x-1}+3}{x^2-4}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{4x-1-9}{\sqrt{4x-1}-3}\cdot\dfrac{1}{x^2-4}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{4x-10}{\sqrt{4x-1}-3}\cdot\dfrac{1}{\left(x-2\right)\left(x+2\right)}\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow2}\dfrac{4x-10}{\sqrt{4x-1}-3}=\dfrac{4\cdot2-10}{\sqrt{4\cdot2-1}-3}=\dfrac{-2}{\sqrt{7}-3}>0\\\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x-2\right)\cdot\left(x+2\right)}=\dfrac{1}{\left(2+2\right)\cdot\left(2-2\right)}=+\infty\end{matrix}\right.\)

24 tháng 1 2021

a/ L'Hospital:

 \(=\lim\limits_{x\rightarrow2}\dfrac{x-\left(x+2\right)^{\dfrac{1}{2}}}{\left(4x+1\right)^{\dfrac{1}{2}}-3}=\lim\limits_{x\rightarrow2}\dfrac{1-\dfrac{1}{2}\left(x+2\right)^{-\dfrac{1}{2}}}{\dfrac{1}{2}\left(4x+1\right)^{-\dfrac{1}{2}}.4}=\dfrac{1-\dfrac{1}{2}.4^{-\dfrac{1}{2}}}{2.9^{-\dfrac{1}{2}}}=\dfrac{9}{8}\)

b/ L'Hospital:\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+7\right)^{\dfrac{1}{2}}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{2}\left(2x+7\right)^{-\dfrac{1}{2}}.2+1}{3x^2-8x}=\dfrac{9^{-\dfrac{1}{2}}+1}{3-8}=-\dfrac{4}{15}\)

10 tháng 11 2023

a: \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{2x+8}-4}{x-4}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2x+8-16}{\sqrt{2x+8}+4}\cdot\dfrac{1}{x-4}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2\left(x-4\right)}{\sqrt{2x+8}+4}\cdot\dfrac{1}{x-4}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2}{\sqrt{2x+8}+4}=\dfrac{2}{\sqrt{2\cdot4+8}+4}\)

\(=\dfrac{2}{\sqrt{8+8}+4}=\dfrac{2}{4+4}=\dfrac{2}{8}=\dfrac{1}{4}\)

b: \(\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{\sqrt{4x+1}-3}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{\dfrac{4x+1-9}{\sqrt{4x+1}+3}}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{4\left(x-2\right)}\cdot\left(\sqrt{4x+1}+3\right)\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x+2\right)\left(\sqrt{4x+1}+3\right)}{4}\)

\(=\dfrac{\left(2+2\right)\left(\sqrt{4\cdot2+1}+3\right)}{4}=\sqrt{9}+3=6\)

c: \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-\sqrt{x+2}}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\dfrac{4-x-2}{2+\sqrt{x+2}}}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-x}\cdot\left(\sqrt{x+2}+2\right)\)

\(=\lim\limits_{x\rightarrow2}\left(-\sqrt{x+2}-2\right)\)

\(=-\sqrt{2+2}-2=-2-2=-4\)

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+x+2}}{x-1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x}+\dfrac{2}{x^2}}}{1-\dfrac{1}{x}}=\dfrac{\sqrt{1+0+0}}{1-0}\)

\(=\dfrac{1}{1}\)

=1

b: \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2-x}+2x\right)\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2-x-4x^2}{\sqrt{4x^2-x}-2x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x}{\sqrt{x^2\left(4-\dfrac{1}{x}\right)}-2x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x}{-x\sqrt{4-\dfrac{1}{x}}-2x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{1}{\sqrt{4-\dfrac{1}{x}}+2}=\dfrac{1}{\sqrt{4}+2}=\dfrac{1}{2+2}=\dfrac{1}{4}\)

NV
5 tháng 3 2022

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-\left(x+1\right)}{2x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x^2+1}-\left(x+1\right)\right)\left(\sqrt{x^2+1}+x+1\right)}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-2x}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-2}{\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\dfrac{-2}{\left(0-1\right)\left(\sqrt{1}+1\right)}=1\)

a. \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\lim\limits_{x\rightarrow2}\dfrac{1}{x+2}=\dfrac{1}{4}\)

b. \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}=\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}\)

Do \(\lim\limits_{x\rightarrow3^-}\left(-x-3\right)=-6< 0\)

\(\lim\limits_{x\rightarrow3^-}\left(3-x\right)=0\) và \(3-x>0;\forall x< 3\)

\(\Rightarrow\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}=-\infty\)

a: \(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x^2+5}-3}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{x^2+5-9}{\sqrt{x^2+5}+3}\cdot\dfrac{1}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{x^2-4}{\left(x+2\right)\left(\sqrt{x^2+5}+3\right)}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(\sqrt{x^2+5}+3\right)}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{x-2}{\sqrt{x^2+5}+3}\)

\(=\dfrac{-2-2}{\sqrt{\left(-2\right)^2+5}+3}=\dfrac{-4}{3+3}=-\dfrac{4}{6}=-\dfrac{2}{3}\)

b: \(\lim\limits_{x\rightarrow2}\dfrac{x^2+x-6}{x^2-4}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+3x-2x-6}{\left(x-2\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x+3}{x+2}=\dfrac{2+3}{2+2}=\dfrac{5}{4}\)