\(\frac{x^2+x+1}{x^2+2x+1}\left(x\ne-1\right)\) đạt GTNN

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

Ta có : \(\frac{x^2+x+1}{x^2+2x+1}=1-\frac{x}{\left(x+1\right)^2}\)

\(=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}=\left[\frac{1}{4}-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\right]+\frac{3}{4}\)

\(=\left(\frac{1}{2}-\frac{1}{x+1}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy GTNNP\(\frac{3}{4}\Leftrightarrow x=1\)

21 tháng 7 2019

a, Để phân số đạt giá trị nguyễn 

\(\Rightarrow x+1⋮x-2\)

\(\Rightarrow x-2+3⋮x-2\)

mà \(x-2⋮x-2\Rightarrow3⋮x-2\)

\(\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{3;5\pm1\right\}\)

21 tháng 7 2019

b,Tương tự :

\(2x-1⋮x+5\)

\(\Rightarrow2x+10-11⋮x+5\)

\(2\left(x+5\right)-11⋮x+5\)

mà \(2\left(x+5\right)⋮x+5\Rightarrow11⋮x+5\)

\(\Rightarrow x+5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(x\in\left\{-4;\pm6;-16\right\}\)

27 tháng 2 2019

Ta có:

\(\left(\frac{1}{4}-2x\right)^2\ge0,\left|8x-1\right|\ge0\)

=> \(-\frac{1}{5}\left(\frac{1}{4}-2x\right)^2\le0,-\left|8x-1\right|\le0\)

=> \(C\le0+0\)+2016=2016

"=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{4}-2x=0\\8x-1=0\end{cases}\Leftrightarrow}x=\frac{1}{8}\)

Vậy C đạt giá trị lớn nhất là 2016 khi x=1/8

(x-  2)2 + 1 \(\ge1\)

=> đề \(\le-2\)

Vậy min là -2 khi x = 2

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak