Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Ta thấy:
\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)
\(\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
hay \(A\ge-2,5\)
Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
a) B = | 2x - 3 | - 7
| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7
Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2
=> MinB = -7 <=> x = 3/2
C = | x - 1 | + | x - 3 |
= | x - 1 | + | -( x - 3 ) |
= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2
Đẳng thức xảy ra khi ab ≥ 0
=> ( x - 1 )( 3 - x ) ≥ 0
=> 1 ≤ x ≤ 3
=> MinC = 2 <=> 1 ≤ x ≤ 3
b) M = 5 - | x - 1 |
- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MaxM = 5 <=> x = 1
N = 7 - | 2x - 1 |
- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7
Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2
=> MaxN = 7 <=> x = 1/2
Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a = b +1 =c+2 <=> a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1
\(0\le a\le b+1\le c+2\\\)
\(\Rightarrow0\le a+b+1+c+2\le\left(c+2\right)+\left(c+2\right)+\left(c+2\right)=3c+6\)
\(\Rightarrow\left(a+b+c\right)+1+2\le3c+6\)
\(\Rightarrow4\le3c+6\)
\(c\ge\frac{-2}{3}\)
Vậy GTNN của c là \(\frac{-2}{3}\)\(\Leftrightarrow\)a+b=\(\frac{5}{3}\)
Nhầm đề câu A rùi bn ơi
Hội con 🐄 chúc bạn học tốt!!!
\(A=\left(x-\frac{2}{7}\right)+\left(0,2-\frac{1}{5}y\right)-\left(-1\right)^{2020}\)
=> \(A=\left(x-\frac{2}{7}\right)+\left(0,2-\frac{1}{5}y\right)-1\)
Vì \(\hept{\begin{cases}\left(x-\frac{2}{7}\right)\ge0\forall x\\\left(0,2-\frac{1}{5}y\right)\ge0\forall y\end{cases}}\Rightarrow\left(x-\frac{2}{7}\right)+\left(0,2-\frac{1}{5}y\right)\ge0\forall x,y\)
\(\Rightarrow\left(x-\frac{2}{7}\right)+\left(0,2-\frac{1}{5}y\right)-1\ge-1\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}x-\frac{2}{7}=0\\0,2-\frac{1}{5}y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{2}{7}\\y=1\end{cases}}\)
Vậy \(A_{min}=-1\)khi \(\hept{\begin{cases}x=\frac{2}{7}\\y=1\end{cases}}\)
a) x ( x - 1 ) < 0
\(\Rightarrow\hept{\begin{cases}x< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x>0\\x-1< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 0\\x>1\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)
=> \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)
=> 0 < x < 1
Vậy 0 < x < 1
b) Lát nghĩ ^^
b) k chắc lắm ( tình bày theo ý hiểu thoii nha )
\(\frac{x^2\left(x-3\right)}{x-9}\le0\)
\(\Rightarrow\) x2 ( x - 3 ) = 0 hoặc \(\hept{\begin{cases}x^2\left(x-3\right)< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x^2\left(x-3\right)>0\\x-9< 0\end{cases}}\)
Mà \(x^2\ge0\forall x\)
\(\Rightarrow\) x - 3 = 0 hoặc \(\hept{\begin{cases}x-3< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3>0\\x-9< 0\end{cases}}\)
\(\Rightarrow\) x = 3 hoặc \(\hept{\begin{cases}x< 3\\x>9\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>3\\x< 9\end{cases}}\)
\(\Rightarrow3\le x< 9\)
Vậy \(3\le x< 9\)
@@ Học tốt
Chiyuki Fujito