Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x^2-2x+1989}{x^2}\)
\(\Leftrightarrow Px^2=x^2-2x+1989\)
\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)
\(\Delta=4-4\left(1-P\right)1989\ge0\)
\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1989\)
Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989
\(C=2x^2+y^2-2x\left(y-1\right)+3\Leftrightarrow2x^2+y^2-2xy+2x+3\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+2\Leftrightarrow\left(x-y\right)^2+\left(x+1\right)^2+2\ge2\)Vậy Min C = 2 khi \(\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)
\(C=2x^2+y^2-2x\left(y+1\right)+3\\ C=x^2-2xy+y^2+x^2-2x+1+2\\ C=\left(x-y\right)^2+\left(x-1\right)^2+2\)
vì: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\) nên \(C\ge2\)
dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\\ x-y=0\Leftrightarrow1-y=0\Rightarrow y=1\)
vậy GTNN của C là 2 tại x=y=1
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
Ta có: \(2x+\frac{1}{x}\ge2\sqrt{2x+\frac{1}{x}}=2\sqrt{2}\)
\(\Rightarrow\left(2x+\frac{1}{x}\right)^2\ge8\)
\(\Rightarrow\left(2y+\frac{1}{y}\right)^2\ge8\)
Dấu \("="\) xảy ra \(\Leftrightarrow x=y=\pm\frac{1}{2}\)
Vậy \(P_{min}=16\Leftrightarrow x=y=\pm\frac{1}{2}\)
\(Q=3xy\left(x+3y\right)-2xy\left(x+4y\right)-x^2\left(y-1\right)+y^2\left(1-x\right)+36\)\(\Leftrightarrow Q=3x^2y+9xy^2-2x^2y-8xy^2-x^2y+x^2+y^2-xy^2+36\)\(\Leftrightarrow Q=\left(3x^2y-2x^2y-x^2y\right)+\left(9xy^2-8xy^2-xy^2\right)+x^2+y^2+36\)\(\Leftrightarrow Q=x^2+y^2+36\ge36\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy Min Q là : \(36\Leftrightarrow x=y=0\)
A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1
B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2
Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24
Đặt
\(A=\left(2x-1\right)^2+\left(x+2\right)^2\)
=> \(A=4x^2-4x+1+x^2+4x+4\)
=> \(A=5x^2+5\)
=> \(Min_A=5\Leftrightarrow x=0\)