K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

Ta có : \(x-2\sqrt{x+2}\) (ĐKXĐ :\(x\ge-2\)

= \(x+2-2\sqrt{x+2}+1-3\)

= \(\left(\sqrt{x+2}-1\right)^2-3\) \(\ge-3\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x+2}-1=0\Leftrightarrow x=-1\) ( Thỏa mãn ĐKXĐ )

Vậy GTNN của \(x-2\sqrt{x+2}\) bằng -3 \(\Leftrightarrow x=-1\)

30 tháng 4 2019

\(P=\frac{x+3\sqrt{x}+2}{x}\)

ĐKXĐ : x > 0

\(\Rightarrow P=1+\frac{3}{\sqrt{x}}+\frac{2}{x}\)

Đặt \(\frac{1}{\sqrt{x}}=t\)

\(\Leftrightarrow P=2t^2+3t+1\)

\(\Leftrightarrow P=2\left(t^2+2.t.\frac{3}{4}+\frac{9}{16}-\frac{1}{16}\right)=2\left(t+\frac{3}{4}\right)^2-\frac{1}{8}\)

\(\Leftrightarrow P=2\left(t+\frac{3}{4}\right)^2+\frac{-1}{8}\)

Có \(2\left(t+\frac{3}{4}\right)^2\ge0\)

\(\Rightarrow P\ge-\frac{1}{8}\)

Vậy MIn P = -1/8 <=> t = -3/4

30 tháng 4 2019

CTV gì mà ngu vc :)) ĐKXĐ là x dương rồi mà kết quả ra âm => óc lz

6 tháng 10 2017

\(\sqrt{-x^2+2x+4}=\sqrt{5-\left(x-1\right)^2}\le\sqrt{5}\)

dấu bằng khi x=1

NV
28 tháng 9 2019

\(P=\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}=\left|x+2\right|+\left|2-x\right|\)

\(\Rightarrow P\ge\left|x+2+2-x\right|=4\)

\(\Rightarrow P_{min}=4\) khi \(\left(x+2\right)\left(2-x\right)\ge0\Rightarrow-2\le x\le2\)

19 tháng 10 2016

\(P=x-2\sqrt{x-2}+3\)

\(=x-2-2\sqrt{x-2}+1+\text{4}\)

\(=\left(\sqrt{x-2}-1\right)^2+4\ge4\)

19 tháng 10 2016

P=(x-2)-2\(\sqrt{x-2}+1+1+3\)

= (\(\sqrt{x-2}-1\))2+4\(\ge\)4

=> Pmin=4

6 tháng 10 2017

\(\frac{3}{2+\sqrt{-x^2+2x+7}}\)=\(\frac{3}{2+\sqrt{8-\left(x-1\right)^2}}\)\(\le\)\(\frac{3}{2+\sqrt{8}}\)

dấu bằng khi x=1

30 tháng 12 2018

B=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Ta có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1\ge1\Leftrightarrow\dfrac{3}{\sqrt{x}+1}\le3\Leftrightarrow-\dfrac{3}{\sqrt{x}+1}\ge-3\Leftrightarrow1-\dfrac{3}{\sqrt{x}+1}\ge-2\Leftrightarrow B\ge-2\)

Dấu '=' xảy ra khi x=0

Vậy giá trị nhỏ nhất của B là -2

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

1 tháng 11 2017

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)