K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

do \(\left(2x-3\right)^4\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^4-2\ge-2\forall x\)

Dấu "=" xảy ra khi:

\(2x-3=0\Rightarrow x=\frac{3}{2}\)

Vậy giá trị nhỏ nhất của biểu thứ là -2 khi \(x=\frac{3}{2}\)

16 tháng 3 2018

Ta có :          \(\left(2x-3\right)^4\ge0\)

               \(\Rightarrow\left(2x-3\right)^4-2\ge-2\)

  Dấu " = " xảy ra \(\Leftrightarrow\)  \(\left(2x-3\right)^4=0\Leftrightarrow\left(2x-3\right)=0\)

                           \(\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)  

                          

29 tháng 3 2018

Ta có : 

\(\left(2x-1\right)^4\ge0\forall x\)

\(\Rightarrow5-\left(2x-1\right)^4\le5\forall x\)

Dấu " = " xảy ra 

\(\Leftrightarrow\left(2x-1\right)^4=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(GTLN\)của D là 5  \(\Leftrightarrow x=\frac{1}{2}\)

Tham khảo nha !!! 

29 tháng 3 2018

Cảm ơn bn nha!

18 tháng 9 2020

a) \(N=\left|3x+8,4\right|-14,2\)

Vì \(\left|3x+8,4\right|\ge0\forall x\)\(\Rightarrow\left|3x+8,4\right|-14,2\ge-14,2\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow3x+8,4=0\)

\(\Leftrightarrow3x=-8,4\)\(\Leftrightarrow x=-2,8\)

Vậy \(minN=-14,2\)\(\Leftrightarrow x=-2,8\)

b) \(E=5,5-\left|2x-1,5\right|\)

Vì \(\left|2x-1,5\right|\ge0\forall x\)\(\Rightarrow-\left|2x-1,5\right|\le0\forall x\)

\(\Rightarrow5,5-\left|2x-1,5\right|\le5,5\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow2x-1,5=0\)

\(\Leftrightarrow2x=1,5\)\(\Leftrightarrow x=0,75\)

Vậy \(maxE=5,5\)\(\Leftrightarrow x=0,75\)

21 tháng 6 2022

\(A=\left(x-4\right)^2+1\)

Ta có: \(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+1\ge1\Rightarrow A\ge1\)

\(A_{min}=1\Leftrightarrow x=4\)

\(B=\left|3x-2\right|-5\)

Ta có: \(\left|3x-2\right|\ge0\Rightarrow\left|3x-2\right|-5\ge-5\Rightarrow B\ge-5\)

\(B_{min}=-5\Leftrightarrow x=\dfrac{2}{3}\)

\(C=5-\left(2x-1\right)^4\)

Ta có: \(\left(2x-1\right)^4\ge0\forall x\Rightarrow-\left(2x-1\right)^4\le0\forall x\Rightarrow5-\left(2x-1\right)^4\le5\Rightarrow C\le5\)

\(C_{max}=5\Leftrightarrow x=\dfrac{1}{2}\)

\(D=-3\left(x-3\right)^2-\left(y-1\right)^2-2021\)

Ta có: \(\left\{{}\begin{matrix}-3\left(x-3\right)^2\le0\forall x\\-\left(y-1\right)^2\le0\forall y\end{matrix}\right.\Rightarrow-3\left(x-3\right)^2-\left(y-1\right)^2\le0\forall x,y\Rightarrow-3\left(x-3\right)^2-\left(y-1\right)^2-2021\le-2021\Rightarrow D\le-2021\)

 

\(D_{max}=-2021\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

\(E=-\left|x^2-1\right|-\left(x-1\right)^2-y^2-2020\)

\(=-\left|\left(x-1\right)\left(x+1\right)\right|-\left(x-1\right)^2-y^2-2020\)

Ta có: \(\left\{{}\begin{matrix}\left|\left(x-1\right)\left(x+1\right)\right|\ge0\forall x\Rightarrow-\left|\left(x-1\right)\left(x+1\right)\right|\le0\\\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\\y^2\ge0\Rightarrow-y^2\le0\end{matrix}\right.\Rightarrow E\le-2020\)

\(E_{max}=-2020\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

 

10 tháng 3 2022

A= 3x2 - 2x + 3

= 3(x2- 2/3x + 1/9 ) + 8/3

= 3(x-1/3)2 + 8/3 > 8/3 \(\forall\)x

dấu ''='' xảy ra <=> x = 1/3

/HT\

10 tháng 3 2022

Nhầm đề rồi mấy bạn trả lời

Bảo là giá trị nguyên của ,\(\frac{2x-3}{3x+2}\) , các bạn ghi là \(3x^2-2x+3\)rồi

HT