Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(=\left|x-2014\right|+\left|2016-x\right|+\left|2015-x\right|\)
\(\ge\left|x-2014+2016-x\right|+\left|2015-x\right|\)
\(=2+\left|2015-x\right|\ge2\)
Dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(x-2014\right)\left(2016-x\right)\ge0\\2015-x=0\end{cases}}\Rightarrow x=2015\)
Ta có: \(\left|2014-x\right|+\left|2016-x\right|=\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|=2\)
Dấu "=" xảy ra <=> \(\left(2014-x\right)\left(2016-x\right)\ge0\)
<=> \(2014\le x\le2016\) (1)
Mặt khác \(\left|2015-x\right|\ge0\). Dấu "=" xảy ra <=> 2015-x = 0 <=> x = 2015 (2)
Ta thấy điều kiện (2) và (1) thỏa nhau
Nên kết hợp cả hai ta suy ra: GTNN của |2014-x|+|2015-x|+|2016-x| bằng 2 khi x = 2015
Do Ix-2015I; Ix-2016I; Ix-2017I lớn hơn hoặc bằng không với mọi x
Mà P bé nhất khi Ix-2015I + Ix-2016I + Ix-2017I bé nhất
TH1 khi Ix - 2015I = 0 => x =2015 => I 2015 - 2015I + I2015 - 2016I +I2015 - 2017I = 0 + 1 + 2 = 3 (đặt là 1)
TH2 khi Ix-2016I = 0 => x= 2016 => I2016 - 2015I + I2016 - 2016I + I 2016 - 2017I = 1 + 0 + 1 = 2 ( đặt là 2)
TH3 khi Ix-2017I = 0 => x= 2017 => I2017- 2015I + I 2017 - 2016I +I 2017 - 2017I = 2+1 + 0 = 3( đặt là 3)
Từ 1, 2, 3 => Giá trị bé nhất của P là 2 khi x=2016
Do |x-2015| ; |x-2016| ; |x-2017| lớn hơn hoặc bằng 0 với mọi x
Mà P bé nhất khi |x-2015| + |x-2016| + |x-2017| bé nhất
TH1: Khi |x-2015| = 0 suy ra x = 2015 suy ra | 2015 - 2015 | + | 2015 - 2016 | + | 2015 - 2017 | = 0 + 1 + 2 = 3 ( 1 )
TH2: Khi |x-2016| = 0 suy ra x = 2016 suy ra | 2016 - 2015 | + | 2016 - 2016 | + | 2016 - 2017 | = 1 + 0 + 1 = 2 ( 2 )
TH3: Khi |x-2017| = 0 suy ra x = 2017 suy ra | 2017 - 2015 | + | 2017 - 2016 | + | 2017 - 2017 | = 2 + 1 + 0 = 3 ( 3 )
Từ ( 1 ) ; ( 2) ; ( 3 ) suy ra giá trị nhỏ nhất của P là 2 khi x = 2016
ta sử dung bất đẳng thức IaI+IbI lớn hơn hoặc bằng Ia+bI
dấu bằng xảy ra khi và chỉ khi tích ab lớn hơn hoặc bằng 0
áp dung vào ta có: Ix-2015I+Ix-2016I=Ix-2015I+I2016-xI \(\ge\) Ix-2015+2016-xI=I1I=1
dấu bằng xảy ra khi và chỉ khi (x-2015)(2016-x) lờn hơn hoặc bằng 0
hay \(2015\le x\le2016\)
vậy giá trị nhỏ nhất của biểu thức là 1. dấu bằng xảy ra khi và chỉ khi \(2015\le x\le2016\)
ghi thiếu cmnr đề r :>
\(A=\left|x-2016\right|+\left|x-1\right|=\left|x-2016\right|+\left|-x+1\right|\ge\left|x-2016-x+1\right|\)
\(\Leftrightarrow A\ge\left|2015\right|=2015\)
dấu "=" xảy ra khi \(\left(x-2016\right).\left(-x+1\right)\ge0\)
=> \(1\le x\le2016\)
Vậy Min A =2015 khi và chỉ khi \(1\le x\le2016\)
Nếu x < 2016 =>\(|x-2016|=2016-x\) .
Khi đó: A=2016-x+x-1=2015
Nếu \(x\ge2016\) =>\(|x-2016|=x-2016\) .
Khi đó: A=x-2016+x-1=2.x-2017 \(\ge2.2016-2017=2015\)
Vậy Amin=2015 \(\Leftrightarrow\)x=2016.
a ) \(A=\left|2x-2\right|+\left|2x-2019\right|\ge\left|2-2x+2x-2019\right|=\left|2-2019\right|=2017\)
Để A đạt GTNN là 2017 <=> \(\left(2-2x\right)\left(2x-2019\right)\ge0\Rightarrow1\le x\le\frac{2019}{2}\)
b ) \(\left|2x-4\right|-\left|6-3x\right|=-1\)
\(\Leftrightarrow2\left|x-2\right|-3\left|x-2\right|=-1\)
\(\Leftrightarrow-\left|x-2\right|=-1\)
\(\Rightarrow\left|x-2\right|=1\)
\(\Rightarrow x=1;3\)
Mà x lớn nhất => x = 3
\(A=31-\sqrt{2x+7}\)
Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)
Với mọi \(x\ge-3,5\) ta có:
\(\sqrt{2x+7}\ge0\)
\(\Rightarrow A=31-\sqrt{2x+7}\le31\)
Dấu "=" xảy ra khi:
\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)
Vậy \(MAX_A=31\) khi \(x=-3,5\)
\(B=-9+\sqrt{7+x}\)
Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:
\(x\ge-7\)
Với mọi \(x\ge-7\) ta có:
\(\sqrt{7+x}\ge0\)
\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:
\(\sqrt{7+x}=0\Rightarrow x=-7\)
\(\Rightarrow MIN_B=-9\) khi \(x=-7\)
a, Sửa đề: Tìm GTLN của biểu thức
Vì \(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)
\(\Rightarrow31-\sqrt{2x+7}\le31\)
Dấu ''='' xảy ra khi :
\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)
Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5
b, Tìm GTNN của B
Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)
Vì \(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)
Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)
Vậy \(B_{Min}=-9\) khi x = -7
p/s: Lần sau gửi đề cẩn thận hơn ||^^
a) \(A=31-\sqrt{2x+7}\)
Ta có: \(-\sqrt{2x+7}\le0\forall x\)
\(\Rightarrow31-\sqrt{2x+7}\le31\forall x\)
Vậy MIN A = 31
a) ta có:|2x-1| >hoặc bằng 0 với mọi x
suy ra : | 2x-1| -10 > hoặc bằng -10 (trừ cả 2 vế cho 10 nha bạn ) với mọi x
vậy Min của a) là -10 <=> 2x-1 =10<=>x =11/2
b) vì |x +2015|+|x+2016| > hoặc bằng 0 với mọi x
=> Min b) = 0 <=> (... tìm x => x rỗng)