Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)
Để \(\frac{3x-2}{x^2-9}=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
ĐKXĐ: x2 khác 0=> x khác 0
A=(x2-4x+4+5x2)/(x2)
=[(x-2)2+5x2)/(x2)
=(x-2)2/(x2)+(5x2)/(x2)
=(x-2)2/(x2)+5
Vì B= (x-2)2/x2 >=0 => Bmin=0 =>x=2(t/m)
=>Amin=0+5=5 <=>x=2
vậy..................
6x^2-4x+4=5x^2+x^2-4x-4
6x^2-4x+4/x^2=5x^2+x^2-4x+4/x^2=5x^2/x^2 +(x-2)^2/x^2= 5+ (x-2)^2/x^2
do (x-2)^2/x^2 >= 0 với mọi x
nên 5+ (x-2)^2/x^2 >= 5
GTNN là 5 khi (x-2)^2/x^2 = 0 rồi cậu giải ra tìm x ý
2) \(ĐKXĐ:x\notin\left\{-2;-3;-4\right\}\)
PT <=> \(x+\frac{x}{x+2}+\frac{x+3}{x^2+3x+2x+6}+\frac{x+4}{x^2+4x+2x+8}-1=0\)
<=>\(x+\frac{x}{x+2}+\frac{x+3}{x\left(x+3\right)+2\left(x+3\right)}+\frac{x+4}{x\left(x+4\right)+2\left(x+4\right)}-1=0\)
<=>\(x+\frac{x}{x+2}+\frac{x+3}{\left(x+2\right)\left(x+3\right)}+\frac{x+4}{\left(x+2\right)\left(x+4\right)}-1=0\)
<=>\(x+\frac{x}{x+2}+\frac{1}{x+2}+\frac{1}{x+2}-1=0\)
<=>\(x+\frac{x+1+1}{x+2}-1=0\)
<=>\(x+\frac{x+2}{x+2}-1=0\Leftrightarrow x+1-1=0\Leftrightarrow x=0\)
Vậy x=0 thì thỏa mãn PT
Xét A - 5 = \(\frac{6x^2-4x+4}{x^2}-\frac{5x^2}{x^2}\)
\(=\frac{x^2-2.x.2+2^2}{x^2}=\frac{\left(x-2\right)^2}{x^2}\)
Có (x - 2)2 \(\ge\)0
x2 \(\ge\)0
=> \(\frac{\left(x-2\right)^2}{x^2}\ge0\)
=> A - 5 \(\ge\)0
=> A \(\ge\)5
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
KL: Amin = 5 <=> x = 2
a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)
b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)
c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì
\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)
d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Vậy GTLN của B là - 1 khi x = -1
A = 6x2−4x+4x26x2−4x+4x2= 2x2+4x2−4x+1x22x2+4x2−4x+1x2= 2+(x−2)2x22+(x−2)2x2
Đặt B = (x−2)2x2(x−2)2x2
Do x khác 0 =>(x−2)2>=0(x−2)2>=0và x2x2>0>0
Cho nên giá trị nhỏ nhất của phân thức A đã nêu là giá trị nhỏ nhất của phân thức B.
=> Min B = 0x20x2= 0
=> Min A = 2 + 0 = 2
Dấu "=" xảy ra khi và chỉ khi (x-2)2 = 0
=> x-2 = 0
=> x = 2