Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Để ý thấy lời giải bài toán sai ở bước 3 do m có thể nhỏ hơn 0
Đáp án A
Hoành độ giao điểm là nghiệm của PT:
x − 4 = − 2 x + 5 x − 2 ⇔ x 2 − 6 x + 8 = − 2 x + 5 x ≠ 2
⇔ x 2 − 4 x − 13 = 0 . Vậy trung điểm I của MN có hoành độ x = 2 ⇒ y = − 2 .
Cho tam giác ABC đều
D thuộc AB , E thuộc AC sao cho BD = AE
CM : Khi D,E thay đổi ( di chuyển ) trên AB,AC thì đường trung tuyến DE luôn đi qua điểm cố định
Help me !!!
Chọn B.
Phương pháp:
Giải phương trình hoành độ giao điểm của hai đồ thị hàm số. Tìm tọa độ giao điểm M và N. Tìm tọa độ trung điểm I của MN.
Cách giải:
Phương trình hoành độ giao điểm của đồ thị hai hàm số
Xét hàm số y = f x = x - 2 + 4 - x trên đoạn 2 , 4 có:
Ta có:
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
y = x - 2 + 4 - x lần lượt là M = 2 ; m = 2
Chọn: D
Đáp án D
Hàm số y = f ( x ) đạt cực tiểu tại x 0 = 0
Hàm số y = f ( x ) có ba điểm cực trị.
Phương trình f ( x ) = 0 có 4 nghiệm phân biệt
Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]
Đáp án C
Ta có: y ' = 3 x 2 + 12 = 0 ⇔ x = 0 x = − 4 l o a i
Lại có: f − 2 = 13 ; f 0 = − 3 ; f 2 = 29.
Vậy min − 1 ; 2 y = m = − 3
Chọn C.
Tập xác định của hàm số
Cách 1: Bấm máy tính. Với máy 580vn chọn start:-2, end: 2, step: 2/9 có:
thử thấy phương án C gần nhất với kết quả này nên ta chọn C.
Chọn D