K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

a) 5x2 - 8x + 5

= 5(x2 - 8/5.x + 1)

= 5(x2 -2.4/5.x + 16/25 + 1 - 16/25)

= 5[(x-4/5)2 + 9/25]

= 5.(x-4/5)+ 9/5 >= 9/5. Dấu "=" xảy ra <=> x = 4/5. Vậy....

Còn lại tương tự nha bạn

4 tháng 7 2019

TL:

a) \(5x^2-8x+5\)

  \(=4x^2-8x+4+x^2+1=\left(2x-2\right)^2+x^2+1\) 

Ta có : \(\left(2x-2\right)^2+x^2+1\ge1\forall x\in R\) 

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-2\right)^2=0\) và  \(x^2=0\) 

                      \(\Leftrightarrow x=1\) và   x=0

Vậy GTNN của BT =1 tại....

b) \(4x^2+6x+15=4x^2+6x+\frac{9}{4}+\frac{51}{4}\) 

  \(=\left(2x+\frac{3}{2}\right)^2+\frac{51}{4}\) 

Ta có: \(\left(2x+\frac{3}{2}\right)^2+\frac{51}{4}\ge\frac{51}{4}\forall x\in R\) 

Dấu "=" xảy ra \(\Leftrightarrow\left(2x+\frac{3}{2}\right)^2=0\Leftrightarrow2x=\frac{-3}{2}\Leftrightarrow x=\frac{-3}{4}\) 

Vậy GTNN của BT =\(\frac{51}{4}\) tại \(x=\frac{-3}{4}\) 

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

a)

\(5x^2-8x+5=5(x^2-\frac{8}{5}x+\frac{4^2}{5^2})+\frac{9}{5}\)

\(=5(x-\frac{4}{5})^2+\frac{9}{5}\geq \frac{9}{5}\)

Vậy GTNN của biểu thức là \(\frac{9}{5}\) khi \((x-\frac{4}{5})^2=0\Leftrightarrow x=\frac{4}{5}\)

b)

\(4x^2-6x+15=(2x)^2-2.2x.\frac{3}{2}+(\frac{3}{2})^2+\frac{51}{4}\)

\(=(2x-\frac{3}{2})^2+\frac{51}{4}\geq \frac{51}{4}\)

Vậy GTNN của biểu thức là $\frac{51}{4}$ khi $(2x-\frac{3}{2})^2=0\Leftrightarrow x=\frac{3}{4}$

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

c)

\(9x^2-8x+1=(3x)^2-2.3x.\frac{4}{3}+(\frac{4}{3})^2-\frac{7}{9}\)

\(=(3x-\frac{4}{3})^2-\frac{7}{9}\geq \frac{-7}{9}\)

Vậy GTNN của biểu thức là $\frac{-7}{9}$ khi $(3x-\frac{4}{3})^2=0\Leftrightarrow x=\frac{4}{9}$

d)

\(x^2+3x+7=x^2+2.x.\frac{3}{2}+(\frac{3}{2})^2+\frac{19}{4}\)

\(=(x+\frac{3}{4})^2+\frac{19}{4}\geq \frac{19}{4}\)

Vậy GTNN của biểu thức là $\frac{19}{4}$ khi $(x+\frac{3}{4})^2=0\Leftrightarrow x=-\frac{3}{4}$

13 tháng 7 2020

a) A = 5x2 - 20x + 2020 = 5(x2 - 4x + 4) + 2000 = 5(x - 2)2 + 2000 \(\ge\)2000 \(\forall\)x

Dấu "=" xảy ra <=> x  - 2 = 0 <=> x = 2

Vậy MinA = 2000 khi x = 2+

b) B = -3x2 - 6x + 15 = -3(x2 + 2x + 1) + 18 = -3(x + 1)2 + 18 \(\le\)18 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MaxB = 18 khi x = -1

c) C = 9x2 + 2x + 7 = (9x2 + 2x + 1/9) + 62/9 = (3x  + 1/3)2  + 62/9 \(\ge\)62/9 \(\forall\)x

Dấu "=" xảy ra <=> 3x + 1/3 = 0 <=> x  = -1/9

Vậy MinC = 62/9 khi x = -1/9

d) D = 16 - 2x2 - 8x = -2(x2 + 4x + 4) + 24 = -2(x + 2)2 + 24 \(\le\) 24 \(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy MaxD = 24 khi x = -2

16 tháng 2 2017

\(\frac{5x^2-8x+8}{2x^2}=\frac{10x^2-16x+16}{4x^2}\)

\(=\frac{4x^2-16x+16+6x^2}{4x^2}=\frac{\left(2x-4\right)^2}{4x^2}+\frac{6}{4}\)\(\ge\)1,5

Dấu = xảy ra khi 2x-4= 0 => x = 2

Mk giải hơi tắt bn cố gắng suy nghĩ nha

24 tháng 5 2015

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1

7 tháng 7 2017

1,A=(x2-6x+9)+2

=(x-3)2+2

ta thấy (x-3)2>=0 với mọi x

=>(x-3)2+2>=2 với mọi x

hay A>=2

dấu "="xảy ra x-3=0<=>x=3

vậy MinA=2 khi x=3

ý b sai đầu bài bạn nhé

C=-(x2-5x)

=-(x2-5x+25/4)+25/4

=-(x-5/2)2+25/4

ta thấy -(x-5/2)2<=0 với mọi x

=>-(x-5/2)2+25/4 <=25/4 với mọi x

hay C<=25/4

dấu "=" xảy ra khi x-5/2=0<=>x=5/2

vậy MaxC=25/4 khi x=5/2

k mk nha

7 tháng 7 2017

Ta có : A = x2 - 6x + 11

<=> A = x2 - 6x + 9 + 2 

<=> A = (x - 3)2 + 2

Mà (x - 3)2 \(\ge0\forall x\)

Nên A =  (x - 3)2 + 2 \(\ge2\forall x\)

Vậy Amin = 2 , dấu "=" xảy ra khi và chỉ khi x = 3