K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 7 2021

Biểu thức A bạn coi lại đề, không thể tính GTNN.

Biểu thức B thì làm như sau:

$|x+2|\geq 0$ với mọi $x$

$(x+y)^4\geq 0$ với $x,y$

$\Rightarrow B=|x+2|+(x+y)^4+2020\geq 2020$ 

Vậy GTNN của $B$ là $2020$

Giá trị này đạt tại $x+2=x+y=0$

$\Leftrightarrow x=-2; y=2$

14 tháng 7 2021

thưa giáo viên biểu thức A=/x-5/=(x-y)3+20

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

21 tháng 7 2021

b)  (2x-6)(x+4)=0

c)  (x-3)(x+4)<0

d)  (x+2)(X-5)>0

21 tháng 7 2021

bạn đăg tách ra cho m.n cùng giúp nhé

Bài 2 : 

a, \(A=\left|2x-4\right|+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=\left|x+2\right|-3\ge-3\)

Dấu ''='' xảy ra khi x = -2 

Vậy GTNN B là -3 khi x = -2 

a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)

=1-2/4=1/2

b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)

\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)

c: x-y=0 nên x=y

\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)

=2019

\(A\ge2020\forall x,y\)

Dấu '=' xảy ra khi x=-5 và y=2021

11 tháng 2 2022

\(a,x^3\times y-2\) Tại x=-3 và y=2 thay vào biểu thức, ta có:

\(x^3\times y-2=\left(-3\right)^3\times2-2=\left(-27\right)\times2-2=\left(-54\right)-2=-56\)

\(b,x^3-5x+3\) Tại x=2 thay vào biểu thức, ta có:

\(x^3-5\times x+3=2^3-5\times2+3=8-10+3=1\)

\(c,x^2\times5x=5x^3\) Tại x=-1 thay vào biểu thức, ta có:

\(5x^3=5\times\left(-1\right)^3=5.\left(-1\right)=-5\)

\(d,5-xy^3\)  Tại x=2, y=1 thay vào biểu thức, ta có:

\(5-xy^3=5-2\times\left(1\right)^3=5-2\times1=5-2=3\)

11 tháng 2 2022

a)Tại x=-3,y=2 giá trị biểu thức là 

 \(-3^3\cdot2-2=-56\)

b)Tại x=2 giá trị biểu thức là 

\(2^3-5\cdot2+3=8-10+3=1\)

c)Tại x=-1 giá trị biểu thức là 

\(\left(-1\right)^2\cdot5\left(-1\right)=1\cdot\left(-5\right)=-5\)

d)Tại x=2,y=1 giá trị biểu thức là 

\(5-2\cdot1^3=5-2=3\)

AH
Akai Haruma
Giáo viên
3 tháng 12 2021

Lời giải:

$|x-2|\geq 0$ với mọi $x\in\mathbb{R}$

$|y+1|\geq 0$ với mọi $y\in\mathbb{R}$

$\Rightarrow A\geq 0+0-5=-5$

Vậy $A_{\min}=-5$. Giá trị này đạt tại $x-2=y+1=0$

$\Leftrightarrow x=2; y=-1$

$A$ không có max bạn nhé.

8 tháng 3 2020

1, Ta có: \(\left(x-y\right)^6+|47-x|+3^3\ge0+0+9=9\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\47-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=47\\y=47\end{cases}}\)

2, Ta có: \(\left(x+5\right)^2+\left(y-9\right)^2+2020\ge0+0+2020=2020\)

Dấu "'=" xảy ra khi \(\hept{\begin{cases}x+5=0\\y-9=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=9\end{cases}}}\)

19 tháng 11 2021

\(A=2,7+\left|x-1,5\right|\ge2,7\)

Dấu \("="\Leftrightarrow x-1,5=0\Leftrightarrow x=1,5\)

Vậy \(A_{min}=2,7\)

\(B=\left|4,1+x\right|-6,3\ge-6,3\)

Dấu \("="\Leftrightarrow4,1+x=0\Leftrightarrow x=-4,1\)

Vậy \(B_{min}=-6,3\)