K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

Em đoán là sai đề: x^2 - 8xy + 10y^2 +2y - 7 - Giải toán với sự trợ giúp của: Wolfram|Alpha đúng không ah?

Sửa đề: Tìm GTNN của \(P=x^2-4xy+10y^2+2y-7\)

\(=\left(x^2-2.x.2y+4y^2\right)+\left(6y^2+2y-7\right)\)

\(=\left(x-2y\right)^2+6\left(y+\frac{1}{6}\right)^2-\frac{43}{6}\ge-\frac{43}{6}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=2y\\y=-\frac{1}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=-\frac{1}{6}\end{cases}}\)

28 tháng 7 2023

Đề yêu cầu là gì bạn?

=x^2+7x+49/4-8133/4

=(x+7/2)^2-8133/4>=-8133/4

Dấu = xảy ra khi x=-7/2

21 tháng 10 2023

\(A=-x^2+2xy-4y^2+2x+10y-3\)

\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)

\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)

\(B=-4x^2-5y^2+8xy+10y+12\)

\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)

\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)

\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)

=>x=y=5

 

28 tháng 12 2016

\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)

\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)

vì \(\left(x-y+1\right)^2\ge0\)

\(\left(y-4\right)^2\ge0\)

nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)

dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

vậy gtnn của bt là 2016 khi x=3;y=4

đề này của sở giáo dục và đào tạo tỉnh hà nam

27 tháng 12 2016

mk chiu ban ak di thi mk cug vao caau day nhưng ko biet lam

12 tháng 9 2017

\(E=5x^2+8xy+5y^2-2x+2y\)

\(=\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)-2\)

\(=4\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)-2\)

\(=4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2-2\ge-2\) có GTNN là - 2

Dấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\)

Vậy \(E_{min}=-2\) tại \(x=1;y=-1\)

7 tháng 12 2017

bạn xem lại đề đi, sao lại có 5x^2+10x^2 , sao không viết thành 15x^2 luôn chứ

20 tháng 10 2016

\(A=x^2+10y^2+2x-6xy-10y+25\)

=> \(A=x^2+2x\left(1-3y\right)+\left(1-3y\right)^2-\left(1-3y\right)^2-10y+25\)

=> \(A=\left(x+1-3y\right)^2-1+6y-9y^2-10y+25\)

=> \(A=\left(x+1-3y\right)^2-9y^2-4y+24\)

=> \(A=\left(x+1-3y\right)^2-\left(3y\right)^2-2.3y.\frac{2}{3}-\left(\frac{2}{3}\right)^2+\frac{220}{9}\)

=> \(A=\left(x+1-3y\right)^2-\left(3y+\frac{2}{3}\right)^2+\frac{220}{9}\)

Có \(\left(x+1-3y\right)^2\ge0\)với mọi x, y

\(\left(3y+\frac{2}{3}\right)^2\ge0\)với mọi y

=> \(A=\left(x+1-3y\right)^2-\left(3y+\frac{2}{3}\right)^2+\frac{220}{9}\ge\frac{220}{9}\)với mọi x, y

Dấu "=" xảy ra <=> \(\left(x+1-3y\right)^2=0\)<=> \(x+1-3y=0\)

và \(\left(3y+\frac{2}{3}\right)^2=0\)=> \(3y+\frac{2}{3}=0\)

=> \(\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{-2}{9}\end{cases}}\)

20 tháng 10 2016

Bổ xung phần kết luận

KL: Amin = \(\frac{220}{9}\)<=> \(\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{-2}{9}\end{cases}}\)

28 tháng 3 2019

a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006