K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 3 2021

\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\Rightarrow\dfrac{y}{x}\ge4\)

\(P=\dfrac{1-\dfrac{2y}{x}+2\left(\dfrac{y}{x}\right)^2}{1+\dfrac{y}{x}}\)

Đặt \(\dfrac{y}{x}=a\ge4\Rightarrow P=\dfrac{2a^2-2a+1}{a+1}=2a-4+\dfrac{5}{a+1}\)

\(P=\dfrac{a+1}{5}+\dfrac{5}{a+1}+\dfrac{9}{5}.a-\dfrac{21}{5}\ge2\sqrt{\dfrac{5\left(a+1\right)}{5\left(a+1\right)}}+\dfrac{9}{5}.4-\dfrac{21}{5}=5\)

Dấu "=" xảy ra khi \(a=4\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

20 tháng 3 2021

Nguyễn Việt Lâm Giáo viên làm thế nào để có thể nghĩ được ra như vậy?

27 tháng 5 2021

\(M=5x^2+y^2-2x+2y+2xy+2004\)

\(=\left(x^2+2x+1\right)+2y\left(x+1\right)+y^2+4x^2-4x+1+2002\)

\(=\left(x+1\right)^2+2y\left(x+1\right)+y^2+\left(2x-1\right)^2+2002\)

\(=\left(x+1+y\right)^2+\left(2x-1\right)^2+2003\ge2002\) với mọi x,y

=> \(M_{min}=2002\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\2x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(M_{min}=2002\)

27 tháng 5 2021

Dòng 4 toi viết nhầm nha, là +2002 

NV
19 tháng 8 2021

\(S=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-4y+4\right)+2021\)

\(S=\left(x+y+1\right)^2+\left(y-2\right)^2+2021\ge2021\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-3;2\right)\)

15 tháng 7 2017

\(A=3x^2+y^2+2xy+4x\)

\(=\left(2x^2+4x+2\right)+\left(x^2+y^2+2xy\right)-2\)

\(=2\left(x^2+2x+1\right)+\left(x+y\right)^2-2\)

\(=2\left(x+1\right)^2+\left(x+y\right)^2-2\)

Dễ thấy: \(2\left(x+1\right)^2+\left(x+y\right)^2\ge0\)

\(\Rightarrow2\left(x+1\right)^2+\left(x+y\right)^2-2\ge-2\)

Xảy ra khi \(\hept{\begin{cases}x+1=0\\x+y=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-1\\x=-y\end{cases}}\Rightarrow x=-y=-1\)

1 tháng 6 2016

\(B=\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)+2016\)

\(B=\left(x+y\right)^2+\left(y-2\right)^2+2016\)

Vậy Min B =2016 <=> x=-2;y=2