Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)
Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)
\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla
Ta có : 2P = \(\frac{\sqrt{4x^2-4xy+4y^2}}{x+y+2z}+\frac{\sqrt{4y^2-4yz+4z^2}}{y+z+2x}+\frac{\sqrt{4z^2-4zx+4x^2}}{z+x+2y}\)
\(=\frac{\sqrt{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}}{x+y+2z}+\frac{\sqrt{\left(2y-z\right)^2+\left(\sqrt{3}z\right)^2}}{y+z+2x}+\frac{\sqrt{\left(2z-x\right)^2+\left(\sqrt{3}x\right)^2}}{z+x+2y}\)
Lại có \(\frac{\sqrt{\left[\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2\right]\left[\left(1^2+\left(\sqrt{3}\right)^2\right)\right]}}{x+y+2z}\ge\frac{\left[\left(2x-y\right).1+3y\right]}{x+y+2z}=\frac{2\left(x+y\right)}{x+y+2z}\)
=> \(\sqrt{\frac{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}{x+y+2z}}\ge\frac{x+y}{x+y+2z}\)(BĐT Bunyakovsky)
Tương tự ta đươc \(2P\ge\frac{x+y}{x+y+2z}+\frac{y+z}{2x+y+z}+\frac{z+x}{2y+z+x}\)
Đặt x + y = a ; y + z = b ; x + z = c
Khi đó \(2P\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3\ge\frac{9}{2}-3=\frac{3}{2}\)
=> \(P\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> x = y = z
bài 8 : bỏ dấu hoặc rồi tính
a;( 17 - 299) + ( 17 - 25 + 299)
bạn Kiệt có đánh sai chỗ nào ko vậy :)). mình thấy có 1 lỗi :)).
Đặt \(a=2x+y;b=2y+x\) \(\left(a,b>0\right)\)
Khi đó : \(P=\frac{2}{\sqrt{a^3+1}-1}+\frac{2}{\sqrt{b^3+1}-1}+\frac{ab}{4}-\frac{8}{a+b}\)
Cô-si , ta có : \(\sqrt{a^3+1}=\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\le\frac{a+1+a^2-a+1}{2}=\frac{a^2+2}{2}\)
\(\Rightarrow\sqrt{a^3+1}-1\le\frac{a^2}{2}\)
Tương tự : \(\sqrt{b^3+1}-1\le\frac{b^2}{2}\)
Mặt khác : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow\frac{2}{a}+\frac{2}{b}\ge\frac{8}{a+b}\Rightarrow-\frac{8}{a+b}\ge\frac{-2}{a}-\frac{2}{b}\)
\(P\ge\frac{4}{a^2}+\frac{4}{b^2}+\frac{ab}{4}-\frac{2}{a}-\frac{2}{b}=\left(\frac{4}{a^2}+1\right)+\left(\frac{4}{b^2}+1\right)+\frac{ab}{4}-\frac{2}{a}-\frac{2}{b}-2\)
\(\ge\frac{4}{a}+\frac{4}{b}+\frac{ab}{4}-\frac{2}{a}-\frac{2}{b}-2=\frac{2}{a}+\frac{2}{b}+\frac{ab}{4}-2\ge3\sqrt[3]{\frac{2}{a}.\frac{2}{b}.\frac{ab}{4}}-2=1\)
Vậy GTNN của P là 1 \(\Leftrightarrow a=b=2\Leftrightarrow x=y=\frac{2}{3}\)
Mình nghĩ đề sửa là:
Cho các số x,y nguyên. Tìm GTM của biểu thức
\(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^3+1}-1}+\frac{\left(2x+y\right)\left(x+2y\right)}{4}-\frac{8}{3\left(x+y\right)}\)
Cách làm giống @Thanh Tùng DZ@ nên không trình bày lại
vì x+y=1\(\Rightarrow\sqrt{1-x}=\sqrt{x+y-x}=\sqrt{y}\)
\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}=\frac{x+y+y}{\sqrt{y}}=\frac{y+1}{\sqrt{y}}=\frac{y+\frac{1}{2}}{\sqrt{y}}+\frac{1}{2\sqrt{y}}\)
ad cau-chy có \(y+\frac{1}{2}\ge2\sqrt{\frac{y}{2}}=\sqrt{2y}\)\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}\ge\sqrt{2}+\frac{1}{2\sqrt{y}}\)
Tương tự .....\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\)
cm \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\ge\frac{4}{\sqrt{2\left(x+y\right)}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}.2\sqrt{2}=3\sqrt{2}\)
Dấu = xra khi x=y=1/2
k cho mk nha mn ^.^
Ta có \(\left(2x^2+y^2+3\right)\left(2+1+3\right)\ge\left(2x+y+3\right)^2\)
=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{2x+y+3}\)
Mà \(\frac{1}{2x+y+3}=\frac{1}{x+x+y+1+1+1}\le\frac{1}{36}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+3\right)\)
=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{36}\left(\frac{2}{x}+\frac{1}{y}+3\right)\)
Khi đó
\(P\le\frac{\sqrt{6}}{36}\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}+9\right)=\frac{\sqrt{6}}{36}.18=\frac{\sqrt{6}}{2}\)
Dấu bằng xảy ra khi x=y=z=1
Vậy \(MaxP=\frac{\sqrt{6}}{2}\)khi x=y=z=1
tìm giá trị nhỏ nhất của biểu thức:
D= x+2y -√2x−y- 5√4y−3+ 13 ( x≥12 ; y≥ 34 )