Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x^2-9\right)^2+\left|y-3\right|-1\)
Thấy : \(\left\{{}\begin{matrix}\left(x^2-9\right)^2\ge0\\\left|y-3\right|\ge0\end{matrix}\right.\) \(\forall x,y\in R\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-3\right|\ge0\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-3\right|-1\ge-1\)
Vậy Min = -1 <=> \(\left[{}\begin{matrix}y=3\\x=\pm3\end{matrix}\right.\)
1, Ta có: \(\left(x-y\right)^6+|47-x|+3^3\ge0+0+9=9\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\47-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=47\\y=47\end{cases}}\)
2, Ta có: \(\left(x+5\right)^2+\left(y-9\right)^2+2020\ge0+0+2020=2020\)
Dấu "'=" xảy ra khi \(\hept{\begin{cases}x+5=0\\y-9=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=9\end{cases}}}\)
Bài 1:
a) \(A=\left(x-2\right)^2-1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)
\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy \(A_{min}=-1\Leftrightarrow x=2\)
b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)
Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)
\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)
Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)
Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)
Ta có: \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)
\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)
\(\Rightarrow\) C không có giá trị lớn nhất
Vậy C không có giá trị lớn nhất
d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)
Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)
\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)
Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)
B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)
\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2
b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)
\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)
B2:
a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)
\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2
b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)
\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........
\(\left(x^2-9\right)^2+\left|y-2\right|+10\)
Ta có:
\(\left(x^2-9\right)^2\ge0\)
\(\left|y-2\right|\ge0\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\)
Vậy giá trị nhỏ nhất của biểu thức đã cho là 10 khi \(x=\pm3;y=2\)
Xét B , thấy :
\(\left(y-9\right)^2\ge0\)
\(\left|x+3\right|\ge0\)
\(\Rightarrow B=\left(y-9\right)^2+\left|x+3\right|-1\ge-1\)
\(\Rightarrow Min_B=-1\)
\(\Leftrightarrow\hept{\begin{cases}y-9=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=9\\x=3\end{cases}}\)