Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2-6x-\sqrt{7}\)
\(=2\left(x^2-3x-\sqrt{\frac{7}{2}}\right)\)
\(=2\left(x^2-3x+\frac{9}{4}-\frac{9+2\sqrt{7}}{4}\right)\)
\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{4}\right]\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\ge-\frac{9+2\sqrt{7}}{2}\)
Vậy \(Min_A=\frac{-9+2\sqrt{7}}{2}\Leftrightarrow x=\frac{3}{2}\)
= \(\left(9x^2+12xy+4y^2\right)+\left(x^2+6x+9\right)+2017\)
\(=\left(3x+2y\right)^2+\left(x+3\right)^2+2017\ge2017\)
=> \(MinP=2017\Leftrightarrow\left\{{}\begin{matrix}2y=-3x\\x=-3\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=-3\\y=\dfrac{9}{2}\end{matrix}\right.\)
Ô cho mình hỏi \(Min\) là gì ạ lớp 9 rồi mà chưa học bao giờ.
`A=x^2+6x+y^2+4y+15`
`=(x^2+6x+9)+(y^2+4y+4)+2`
`=(x+3)^2+(y+2)^2+2`
Vì `(x+3)^2+(y+2)^2 >=0 forall x,y`
`=>A_(min)=2 <=> x=-3; y=-2`.
Ta có: \(A=x^2+6x+y^2+4y+15\)
\(=x^2+6x+9+y^2+4y+4+2\)
\(=\left(x+3\right)^2+\left(y+2\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi (x,y)=(-3;-2)
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
\(A=x^2-6x+15=\left(x^2-6x+9\right)+6\)
\(=\left(x-3\right)^2+6\ge6\)
\(minA=6\Leftrightarrow x=3\)
A=x²-2x3+3²+6
A=(x-3)²+6
Vì (x-3)² luôn > hoặc = 0 với mọi x
=> (x-3)²+6 > hoặc = 6
Vậy GTNN = 6
Dấu "=" xảy ra khi x-3=0
X=3
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
c) Ta có: \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu '=' xảy ra khi x(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
d) Ta có: \(x^2+5y^2-2xy+4y+3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)