Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ne0;x\ne\pm1\)
a) Bạn ghi lại rõ đề.
b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)
c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)
Không tồn tại Min P \(\forall x\inℝ\)
Bài 5:
a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:
\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)
b: Để E<1 thì E-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
c: Để E nguyên thì \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)
hay \(x\in\left\{16;25;49\right\}\)
Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
Thay \(x=\sqrt{3}-1\) vào \(B\), ta được
\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)
b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)
Vậy \(B_{min}=-2\) khi \(x=0\)
`P=\sqrt{1-x}+\sqrt{1+x}+2\sqrtx(0<=x<=1)`
Áp dụng BĐT `\sqrta+\sqrtb>=\sqrt{a+b}`
`=>\sqrt{1-x}+\sqrt{x}>=1`
`=>P>=1+\sqrtx+\sqrt{x+1}>=1+0+1=2`
Dấu "=" `<=>x=0`
Ta có:
\(A=\sqrt{1-x}+\sqrt{1+x}\) \(\left(-1\le x\le1\right)\)
\(=1.\sqrt{1-x}+1.\sqrt{1+x}\)
Áp dụng BĐT Bunhiacopxki, ta có:
\(A=1.\sqrt{1-x}+1.\sqrt{1+x}\)
\(\le\sqrt{\left(1^2+1^2\right).\left(1-x+1+x\right)}=\sqrt{2.2}=2\)
Vậy \(A_{max}=2\), đạt được khi và chỉ khi \(\dfrac{1}{\sqrt{1-x}}=\dfrac{1}{\sqrt{1+x}}\Leftrightarrow1-x=1+x\Leftrightarrow x=0\)
Lời giải:
$P(x^2-2x+3)=x^2-x+1$
$\Leftrightarrow x^2(P-1)-x(2P-1)+(3P-1)=0(*)$
Vì $P$ tồn tại nên dấu "=" luôn xảy ra. Tức là $(*)$ luôn có nghiệm
$\Leftrightarrow \Delta=(2P-1)^2-4(P-1)(3P-1)\geq 0$
$\Leftrightarrow -8P^2+12P-3\geq 0$
$\Leftrightarrow P\geq \frac{3-\sqrt{3}}{4}$
Đây chính là giá trị min của $P$.
Đk: \(x\ge0;x\ne4\)
Đặt A=\(\dfrac{\sqrt{x}}{1+\sqrt{x}}:\dfrac{1}{\sqrt{x}-2}\)\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{1+\sqrt{x}}\)\(=\dfrac{x-2\sqrt{x}}{1+\sqrt{x}}\)
\(\Leftrightarrow x-\sqrt{x}\left(A+2\right)-A=0\) (1)
Coi pt (1) là pt ẩn \(\sqrt{x}\)
Pt (1) có nghiệm không âm <=> \(\left\{{}\begin{matrix}\Delta\ge0\\A+2\ge0\\-A\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}A^2+8A+4\ge0\\A\ge-2\\A\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}A\le-4-2\sqrt{3}\\A\ge-4+2\sqrt{3}\end{matrix}\right.\\A\ge-2\\A\le0\end{matrix}\right.\) \(\Rightarrow-4+2\sqrt{3}\le A\le0\)
=>\(A_{min}=-4+2\sqrt{3}\)
Vậy....
(TÌm min max theo del thì ko nhất thiết phải tìm dấu bằng xảy ra khi nào vì nó luôn tồn tại, ở trong bài này dấu = xảy ra khi \(x=4-2\sqrt{3}\))