\(\dfrac{2x^2-8x+17}{x^2-2x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

\(A=\dfrac{2x^2-8x+17}{x^2-2x+1}\left(x\ne1\right)\)

\(\Leftrightarrow A\left(x^2-2x+1\right)=2x^2-8x+17\)

\(\Leftrightarrow Ax^2-2Ax+A=2x^2-8x+17\)

\(\Leftrightarrow x^2\left(A-2\right)-2x\left(A-4\right)+A-17=0\left(1\right)\)

\(A-2=0\Leftrightarrow A=2\Leftrightarrow x=3,75\left(tm\right)\left(2\right)\)

\(A-2\ne0\Leftrightarrow A\ne2\Rightarrow\Delta'\ge0\Leftrightarrow\left(A-4\right)^2-\left(A-17\right)\left(A-2\right)\ge0\Leftrightarrow A\ge\dfrac{18}{11}\Rightarrow A_{min}=\dfrac{18}{11}\Leftrightarrow x=\dfrac{13}{2}\left(tm\right)\left(3\right)\)

\(\left(2\right)và\left(3\right)\Rightarrow A_{min}=\dfrac{18}{11}\Leftrightarrow x=\dfrac{13}{2}\)

 

30 tháng 7 2018

\(A=\dfrac{1}{-x^2+2x-2}\)

A min \(\Leftrightarrow\dfrac{1}{A}\)max

ta có \(\dfrac{1}{A}=-x^2+2x-2=-\left(x^2-2x+2\right)=-\left(x-1\right)^2-1\le-1\)

\(\dfrac{1}{A}\)max= -1 tại x=1

=> A min = -1 tại x=1

\(B=\dfrac{2}{-4x^2+8x-5}\) ( phải là -4x2 nha bn)

B min \(\Leftrightarrow\dfrac{1}{B}\) max

ta có \(\dfrac{1}{B}=\dfrac{-4x^2+8x-5}{2}=\dfrac{-\left(4x^2-8x+5\right)}{2}=\dfrac{-\left(2x-4\right)^2+11}{2}=\dfrac{\left(-2x-4\right)^2}{2}+\dfrac{11}{2}\le\dfrac{11}{2}\)

\(\dfrac{1}{B}\)max=\(\dfrac{11}{2}\) tại x=2

\(\Rightarrow B\) min = \(\dfrac{1}{\dfrac{11}{2}}=\dfrac{2}{11}\) tại x=2

\(A=\dfrac{3}{2x^2+2x+3}=\dfrac{3}{2\left(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{5}{2}}=\dfrac{3}{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}\)

A max \(\Leftrightarrow\dfrac{1}{A}\) min

\(\Leftrightarrow\dfrac{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{5}{6}\ge\dfrac{5}{6}\)

\(\dfrac{1}{A}\) min = \(\dfrac{5}{6}\)tại x= \(-\dfrac{1}{2}\)

\(\Rightarrow A\)max = \(\dfrac{6}{5}\) tại x= \(-\dfrac{1}{2}\)

B\(=\dfrac{5}{3x^2+4x+15}=\dfrac{5}{3.\left(x^2+\dfrac{4}{3}x+5\right)}=\dfrac{5}{3\left(x^2+2.x.\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{41}{9}\right)}=\dfrac{5}{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}\)

B max \(\Leftrightarrow\dfrac{1}{B}\) min

\(\Leftrightarrow\dfrac{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}{5}=\dfrac{3\left(x+\dfrac{2}{3}\right)^2}{5}+\dfrac{41}{15}\ge\dfrac{41}{15}\)

\(\dfrac{1}{B}\) min = \(\dfrac{41}{15}\) tại x=\(-\dfrac{2}{3}\)

=> \(B\) max = \(\dfrac{15}{41}\) tại x=\(-\dfrac{2}{3}\)

Đây chỉ là gợi ý !! bn pải tự lí luận nha

tik thanghoa

6 tháng 9 2020

+) \(A=x^2+2x-9=x^2+2x+1-10=\left(x+1\right)^2-10\ge-10\)

Min A = -10 \(\Leftrightarrow x=-1\)

+) \(B=x^2+5x-1=x^2+5x+\frac{25}{4}-\frac{29}{4}=\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\ge\frac{-29}{4}\)

Min B = -29/4 \(\Leftrightarrow x=\frac{-5}{2}\)

+) \(C=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\ge-4\)

Min C = -4 \(\Leftrightarrow x=-2\)

+) \(D=x^2-8x+17=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)

Min D = 1 \(\Leftrightarrow x=4\)

+) \(E=x^2-7x+1=x^2-7x+\frac{49}{4}-\frac{45}{4}=\left(x-\frac{7}{2}\right)-\frac{45}{4}\ge-\frac{45}{4}\)

Min E = -45/4 \(\Leftrightarrow x=\frac{7}{2}\)

6 tháng 9 2020

A = x2 + 2x - 9 

= ( x2 + 2x + 1 ) - 10

= ( x + 1 )2 - 10 ≥ -10 ∀ x

Đẳng thức xảy ra <=> x + 1 = 0 => x = -1

=> MinA = -10 <=> x = -1

B = x2 + 5x - 1

= ( x2 + 5x + 25/4 ) - 29/4

= ( x + 5/2 )2 - 29/4 ≥ -29/4 ∀ x

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinB = -29/4 <=> x = -5/2

C = x2 + 4x

= ( x2 + 4x + 4 ) - 4

= ( x + 2 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinC = -4 <=> x = -2

D = x2 - 8x + 17

= ( x2 - 8x + 16 ) + 1

= ( x - 4 )2 + 1 ≥ 1 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MinD = 1 <=> x = 4

E = x2 - 7x + 1

= ( x2 - 7x + 49/4 ) - 45/4

= ( x - 7/2 )2 - 45/4 ≥ -45/4 ∀ x

Đẳng thức xảy ra <=> x - 7/2 = 0 => x = 7/2

=> MinE = -45/4 <=> x = 7/2

8 tháng 12 2018

\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)

 \(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)

\(x^2+1\ge1\). dấu = xảy ra khi x2=0

=> x=0

Vậy \(B_{min}\Leftrightarrow x=0\)

ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)

dấu = xảy ra khi \(x+1=0\)

\(\Rightarrow x=-1\)

Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)

8 tháng 12 2018

Để A xác định 

\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x^2-1\ne0\\x^2-2x+1\ne0\end{cases}}\)

\(\Rightarrow x^2-1\ne0\)

\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b, 

20 tháng 3 2018

ĐKXĐ x ≠1

\(B=\dfrac{3x^2-8x+6}{x^2-2x+1}\)

= \(\dfrac{\left(2x^2-4x+2\right)+\left(x^2-4x+4\right)}{x^2-2x+1}\)

= \(\dfrac{2\left(x^2-2x+1\right)}{x^2-2x+1}+\dfrac{x^2-4x+4}{x^2-2x+1}\)

= \(2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\)

do (x-2)2 ≥0 ∀x

(x-1)2 ≥0 ∀x

=> \(\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\)

<=> \(2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

<=> B ≥ 2

Min B =2 khi

(x-2)2 =0

⇔x-2=0

⇔x=2

vậy GTNN B =2 khi x=2

16 tháng 9 2018

\(B=2x^2-8x+1=2\left(x^2-4x+\frac{1}{2}\right)=2\left(x^2-4x+4-\frac{7}{2}\right)=2\left(x-2\right)^2-7\)

Vì: \(2\left(x-2\right)^2-7\ge-7\forall x\)

=> Giá trị nhỏ nhất của B là - 7 tại \(2\left(x-2\right)^2=0\Rightarrow x=2\)

=.= hok tốt!!

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

24 tháng 11 2019

a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)

\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)

b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)

\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)

\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)

24 tháng 11 2019

c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\le-1\)

\(\Rightarrow V\ge\frac{1}{-1}=-1\)

Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)

\(=-\left(4x^2-8x+4\right)-1\)

\(=-\left(2x-2\right)^2-1\le-1\)

\(\Rightarrow X\ge\frac{2}{-1}=-2\)

Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

12 tháng 12 2017

điều kiện của x để gtrị của biểu thức đc xác định

=>\(2x+10\ne0;x\ne0:2x\left(x+5\right)\ne0\)

\(2x+5\ne0;x\ne0\)

=>\(x\ne-5;x\ne0\)

vậy đkxđ là \(x\ne-5;x\ne0\)

rút gon giống với bạn nguyen thuy hoa đến \(\dfrac{x-1}{2}\)

b,để bt =1=>\(\dfrac{x-1}{2}=1\)

=>x-1=2

=>x=3 thỏa mãn đkxđ

c,d giống như trên