K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

\(\left(x-3\right)\left(4x+5\right)+2019\)

\(=4x^2-7x-15+2019\)

\(=4x^2-7x+2004\)

\(=4\left(x^2-\frac{7}{4}x+501\right)\)

\(=4\left(x^2-\frac{7}{4}x+\frac{49}{64}+\frac{32015}{64}\right)\)

\(=4\left[\left(x-\frac{7}{8}\right)^2+\frac{32015}{64}\right]\)

\(=4\left[\left(x-\frac{7}{8}\right)^2\right]+\frac{32015}{16}\ge\frac{32015}{16}\)

Vậy GTNN của bt là \(\frac{32015}{16}\Leftrightarrow x-\frac{7}{8}=0\Leftrightarrow x=\frac{7}{8}\)

26 tháng 10 2019

mk tưởng 7/4

16 tháng 3 2020

\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta thấy \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

\(\Rightarrow A\ge17,5\)

Dấu "=" xảy ra  \(\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

...
\(B=\left|x-2\right|+\left|x-6\right|+2017\)

\(=\left|x-2\right|+\left|6-x\right|+2017\)

Ta thấy \(\left|x-2\right|+\left|6-x\right|\ge\left|x-2+6-x\right|=4\)

\(\Rightarrow B\ge4+2017=2021\)

Dấu "=" xảy ra khi \(2\le x\le6\)

....

\(C=\left(2x+1\right)^{2020}-2019\)

Ta thấy \(\left(2x+1\right)^{2020}\ge0\)

\(\Rightarrow C=\left(2x+1\right)^{2020}-2019\ge-2019\)

Dấu "=" xảy ra khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

....

4 tháng 5 2019

mình chịu nha

4 tháng 5 2019

\(=x^2-6x+2019\)

\(=\left(x-3\right)^2+2010\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+2010\ge0+2010\forall x\)

hay \(C\left(x\right)\ge2010\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)

                           \(\Leftrightarrow x=3\)

Vậy Min C(x)=2010 \(\Leftrightarrow x=3\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)

27 tháng 6 2019

Bài 1:

Ta có: \(6.|3x-12|\ge0\forall x\)

\(\Rightarrow23+6.|3x-12|\ge23+0\forall x\)

Hay \(A\ge23\forall x\)

Dấu"=" xảy ra \(\Leftrightarrow3x-12=0\)

                        \(\Leftrightarrow x=4\)

Vậy Min A=23 \(\Leftrightarrow x=4\)

27 tháng 6 2019

Bài 2:

Ta có: \(5.|14-7x|\ge0\forall x\)

\(\Rightarrow-5.|14-7x|\le0\forall x\)

\(\Rightarrow2019-5.|14-7x|\le2019-0\forall x\)

Hay \(B\le2019\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow14-7x=0\)

                        \(\Leftrightarrow x=2\)

Vậy Max B=2019 \(\Leftrightarrow x=2\)

26 tháng 9 2018

có |của một số|>0

==>giá trị nhỏ nhất của F =1

=> x=2018

26 tháng 9 2018

\(F=\left|2018-x\right|+\left|2019-x\right|\)

     \(=\left|2018-x\right|+\left|x-2019\right|\)

Ta có :

\(\left|2018-x\right|+\left|x-2019\right|\ge\left|2018-x+x-2019\right|\)

=> \(F\ge\left|-1\right|\)

=> \(F\ge1\)

Dấu = xảy ra khi : ( 2018 - x ) ( x - 2019 ) > 0

TH1 : \(\hept{\begin{cases}2018-x>0\\x-2019>0\end{cases}}\)

=> \(\hept{\begin{cases}x< 2018\\x>2019\end{cases}}\)

=> 2019 < x < 2018 ( vô lí - loại )

TH2 : \(\hept{\begin{cases}2018-x< 0\\x-2019< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>2018\\x< 2019\end{cases}}\)

=> 2018 < x < 2019

Vậy giá trị nhỏ nhất của F là 1 khi x thỏa mãn 2018 < x < 2019