Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne4\end{matrix}\right.\)
\(A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}-2}\right)\cdot\dfrac{a-4}{\sqrt{4a}}\)
\(=\dfrac{2\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{2a}\)
\(=\sqrt{a}+2\)
b: A-2<0
=>\(\sqrt{a}+2-2< 0\)
=>\(\sqrt{a}< 0\)
=>\(a\in\varnothing\)
c: Bạn ghi đầy đủ đề đi bạn
Theo Cauchy:
\(3\sqrt{2a-1}=3\sqrt{1\left(2a-1\right)}\le\dfrac{3\left(1+2a-1\right)}{2}=3a\)
\(a\sqrt{5-4a^2}\le\dfrac{a^2+5-4a^2}{2}=\dfrac{5-3a^2}{2}\)
\(A\le3a+\dfrac{5-3a^2}{2}=\dfrac{5-3a^2+6a}{2}=\dfrac{-3\left(a-1\right)^2}{2}+4\le4\)
Vậy \(A_{max}=4\Leftrightarrow x=1\)
bạn có cách nào đoán điểm rơi hay thế ạ , phải thử thôi hay có cách gì khác nữa không v
dễ vãi :
\(4a^2-3a+\frac{1}{4a}+2018=4a^2-4a+1+a+\frac{1}{4a}+2017=\left(2a-1\right)^2+a+\frac{1}{4a}+2017\)
áp dụng BDT cosooossi 2 số ta có: \(a+\frac{1}{4a}\ge2\sqrt{a.\frac{1}{4a}}=2\sqrt{\frac{1}{4}}=2.\frac{1}{2}=1\)
\(\left(2a-1\right)^2\ge0\forall a\)
nên: \(\left(2a-1\right)^2+a+\frac{1}{4a}+2017\ge2018\forall a\)hay \(4a^2-3a+\frac{1}{4a}+2018\ge2018\forall a\)
dấu = xảy ra <=>\(a=\frac{1}{2}\)
Bài 5:
a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:
\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)
b: Để E<1 thì E-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
c: Để E nguyên thì \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)
hay \(x\in\left\{16;25;49\right\}\)
Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
Thay \(x=\sqrt{3}-1\) vào \(B\), ta được
\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)
b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)
Vậy \(B_{min}=-2\) khi \(x=0\)
Bạn tham khảo (bài làm dài hơn):
Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến