Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2A = 4x^2+6y^2+8xy-16x-4x+36
= [(4x^2+8xy+4y^2)-2.(2x+2y).4+16] + (2y^2+12y+18) + 2
= [(2x+2y)^2-2.(2x+2y).4+16]+2.(y^2+6x+9)+2
= (2x+2y-4)^2+2.(y+3)^2+4 >= 2 => A > = 1
Dấu "=" xảy ra <=> 2x+2y-4=0 và y+3=0 <=> x=5 ; y=-3
Vậy GTNN của A = 1 <=> x=5 ; y=-3
Tk mk nha
Đã bảo bao nhiêu lần là vô công thức toán học mà gõ mà chẳng chịu làm theo làm tôi đọc đau hết cả mắt mà chả hiểu gì
-_- hại mắt người ta
a, B=x2+4xy+y2+x2-8x+16+2012
B=(x+y) 2+(x-4)2+2012
Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)
b làm tương tự
c, 9x2+6x+1+y2-4y+4+x2-4xz+4z2=0
(3x+1)2+(y-4)2+(x-2z)2=0
Vậy 3x+1=0 => x = -1/3
y-4=0 => y=4
x-2z=0 thế x=-1/3 ta được. -1/3-2z=0 => z = -1/6
Bạn nhớ ghi lại đề minh không ghi đề
a) \(B=2x^2+y^2+2xy-8x+2028\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)
b)\(C=x^2+5y^2+4xy+2x+2y-7\)
\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)
\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)
\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)
\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
Đặt \(A=3x^2-4xy+2y^2-3x+2007\)
\(A=2x^2-4xy+2y^2+x^2-3x+2007\)
\(A=2\left(x-y\right)^2+x^2-2.\frac{3}{2}+\frac{9}{4}+\frac{8019}{4}\)
\(A=2\left(x-y\right)^2+\left(x-\frac{3}{2}\right)^2+\frac{8019}{4}\ge\frac{8019}{4}\)
Dấu = xảy ra khi \(\hept{\begin{cases}x-y=0\\x-\frac{3}{2}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\x=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy Min A = \(\frac{8019}{4}\) khi \(x=y=\frac{3}{2}\)
\(C=x^2y^2+2xy\cdot12+144+2x^2+16x+32+15\)
\(C=\left(xy+12\right)^2+2\left(x+4\right)^2+15\ge15\forall x;y\)
GTNN của C = 15 khi x = -4; y = -3
C= 2x2 + 4y2 + 4xy - 3x -1
= (x2 + 4xy + 4y2) + (x2 - 3x + 9/4) - 13/4
= (x+2y)2 + (x-3/2)2 - 13/4
vì (x+2y)2 >=0
(x-3/2)2 >=0
=) MinC= -13/4 (dấu '=' xảy ra khi x=3/2 ; y=-3/4)
vậy ....
chúc bn hc tốt
a) Ta có: \(M=x^2-3x+10\)
\(=x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{31}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)
Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{3}{2}=0\)
hay \(x=\frac{3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(M=x^2-3x+10\) là \(\frac{31}{4}\) khi \(x=\frac{3}{2}\)
b) Ta có: \(N=2x^2+5y^2+4xy+8x-4y-100\)
\(=x^2+8x+16+x^2+4xy+4y^2+y^2-4y+4-120\)
\(=\left(x+4\right)^2+\left(x+2y\right)^2+\left(y-2\right)^2-120\)
Ta có: \(\left(x+4\right)^2\ge0\forall x\)
\(\left(x+2y\right)^2\ge0\forall x,y\)
\(\left(y-2\right)^2\ge0\forall y\)
Do đó: \(\left(x+4\right)^2+\left(x+2y\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x+4\right)^2+\left(x+2y\right)^2+\left(y-2\right)^2-120\ge-120\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+4=0\\x+2y=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4+2y=0\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\2y=4\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\\y=2\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(N=2x^2+5y^2+4xy+8x-4y-100\) là -120 khi x=-4 và y=2
\(A=13x^2+y^2+4xy-2y-16x+2015\)
\(A=\left(4x^2-4x+1\right)+2y\left(2x-1\right)+y^2+\left(9x^2-12x+4\right)+2010\)
\(A=\left(2x-1\right)^2+2y\left(2x-1\right)+y^2+\left(3x-2\right)^2+2010\)
\(A=\left(2x-1+y\right)^2+\left(3x-2\right)^2+2010\)
Đến đây bạn tự làm nốt nhé~
không làm được thì ib
Ta có:
\(C=2x^2+3y^2+4xy-8x-2y+18\)
\(C=2\left(x^2+2xy+y^2\right)+y^2-8x-2y+18\)
\(C=2[\left(x+y\right)^2-4\left(x+y\right)+4]+\left(y^2+6y+9\right)+1\)
\(C=2\left(x+y-2\right)^2+\left(y+3\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow x+y=2\)và \(y=-3\)
Hay x = 5 , y = -3