K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

ta có 4X2-12X+10= 4X2-2*2*3X+32+1=(2X-3)2+1

(2x-3)2>=0 => ( 2X-3)2+1>=1

Biểu thức đạt giá trị nhỏ nhất là 1 

khi đó 2X-3=0 => X=3/2

10 tháng 5 2017

Ta có: 4x^2 - 12x + 10 = 4x^2 - 6x - 6x +9 + 1= [2x(2x-3) - 3(2x-3)] + 1 = (2x-3)^2 + 1

để (2x-3)^2 + 1 bé nhất thì (2x-3)^2 bé nhất => (2x-3)^2= 0 => (2x-3)^2 + 1 = 1

Vậy giá trị bé nhất của A=.. là 1

22 tháng 6 2019

Ta có: A = 12x - 4x2 + 3 = -(4x2 - 12x - 3) = -4(x2 - 3x + 9/4) + 12 = -4(x + 3/2)2 + 12

Ta luôn có: -4(x + 3/2)2 \(\le\) 0 \(\forall\)x

=> -4(x + 3/2)2 + 12 \(\le\) 12 \(\forall\)x

hay A \(\le\) 12 \(\forall\)x

Dấu "=" xảy ra <=> (x + 3/2)2 = 0 <=> x + 3/2 = 0 <=> x = -3/2

Vậy Amax = 12 tại x = -3/2

16 tháng 9 2020

a) A = x2 + 12x + 39

= ( x2 + 12x + 36 ) + 3

= ( x + 6 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6

=> MinA = 3 ⇔ x = -6

B = 9x2 - 12x 

= 9( x2 - 4/3x + 4/9 ) - 4

= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3

=> MinB = -4 ⇔ x = 2/3

b) C = 4x - x2 + 1

= -( x2 - 4x + 4 ) + 5

= -( x - 2 )2 + 5 ≤ 5 ∀ x

Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2

=> MaxC = 5 ⇔ x = 2

D = -4x2 + 4x - 3

= -( 4x2 - 4x + 1 ) - 2

= -( 2x - 1 )2 - 2 ≤ -2 ∀ x

Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2

=> MaxD = -2 ⇔ x = 1/2

16 tháng 9 2020

Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3

Dấu "=" xảy ra <=> x + 6 = 0

=> x = -6

Vậy Min A = 3 <=> x = -6

Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4

Dấu "=" xảy ra <=> 3x - 2 =0

=> x = 2/3

Vậy Min B = -4 <=> x = 2/3

b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5

Dấu "=" xảy ra <=> x - 2 = 0

=> x = 2

Vậy Max C = 5 <=> x = 2

Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2

Dấu "=" xảy ra <=> 2x - 1 = 0

=> x = 0,5

Vậy Max D = -2 <=> x = 0,5

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

3 tháng 7 2019

Ta có:

\(4x^2+12x+100=\left(2x+3\right)^2+91\)

\(\Rightarrow B=\frac{-9}{\left(2x+3\right)^2+91}\)

Vì \(\left(2x+3\right)^2\ge0;\forall x\)

\(\Rightarrow\left(2x+3\right)^2+91\ge0+91;\forall x\)

\(\Rightarrow\frac{9}{\left(2x+3\right)^2+91}\le\frac{9}{91};\forall x\)

\(\Rightarrow\frac{-9}{\left(2x+3\right)^2+91}\ge\frac{-9}{91};\forall x\)

Dấu '"=" xảy ra \(\Leftrightarrow2x+3=0\)

                          \(\Leftrightarrow x=\frac{-3}{2}\)

Vậy MIN \(B=\frac{-9}{91}\)\(\Leftrightarrow x=\frac{-3}{2}\)

3 tháng 7 2019

TL:

\(B=\frac{-9}{\left(2x+6\right)^2+64}\) 

 Để Bmin \(\Rightarrow\left(2x+6\right)^2+64\) nhỏ nhất

Mà \(\left(2x+6\right)^2+64\ge64\forall x\in R\) 

dấu "=" xảy ra <=> \(\left(2x+6\right)^2=0\Leftrightarrow2x+6=0\Leftrightarrow2x=-6\Leftrightarrow x=-3\) 

=>Bmin =\(\frac{-9}{64}\) tại x=-3

Vậy.......

24 tháng 8 2020

1. a. \(A=8a-8a^2+3=-8\left(a-\frac{1}{2}\right)^2+5\)

Vì \(\left(a-\frac{1}{2}\right)^2\ge0\forall a\)\(\Rightarrow-8\left(a-\frac{1}{2}\right)^2+5\le5\)

Dấu "=" xảy ra \(\Leftrightarrow-8\left(a-\frac{1}{2}\right)^2=0\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)

Vậy Amax = 5 <=> a = 1/2

b. \(B=b-\frac{9b^2}{25}=-\frac{9}{25}\left(b-\frac{25}{18}\right)^2+\frac{25}{36}\)

Vì \(\left(b-\frac{25}{18}\right)^2\ge0\forall b\)\(\Rightarrow-\frac{9}{25}\left(b-\frac{25}{18}\right)^2+\frac{25}{36}\le\frac{25}{36}\)

Dấu "=" xảy ra \(\Leftrightarrow-\frac{9}{25}\left(b-\frac{25}{18}\right)^2=0\Leftrightarrow b-\frac{25}{18}=0\Leftrightarrow b=\frac{25}{18}\)

Vậy Bmax = 25/36 <=> b = 25/18

24 tháng 8 2020

a,\(A=8a-8a^2+3\)

       \(=-8\left(a^2-a\right)+3\)

       \(=-8\left(a^2-2a\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)+3\)

       \(=-8\left[\left(a-\frac{1}{2}\right)^2-\frac{1}{4}\right]+3\)

       \(=-8\left(a-\frac{1}{2}\right)^2+2+3\)

       \(=-8\left(a-\frac{1}{2}\right)^2+5\le5\forall a\) 

Dấu"=" xảy ra khi \(\left(a-\frac{1}{2}\right)^2=0\Rightarrow a=\frac{1}{2}\)

Vậy \(Max_A=5\)khi\(a=\frac{1}{2}\)

bài 2:

b,\(D=d^2+10e^2-6de-10e+26\)

\(=d^2-23de+\left(3e\right)^2+e^2-2.5e+5^2+1\)

\(=\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\forall d,e\)

Dấu"=" xảy ra khi\(\orbr{\begin{cases}\left(d-3e\right)^2=0\\\left(e-5\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}d=15\\e=5\end{cases}}}\)

vậy \(D_{min}=1\)khi \(d=15;e=5\)

c,:\(E=4x^4+12x^2+11\)

\(=\left(2x^2\right)^2+2.2x^2.3+3^2+2\)

\(=\left(2x^2+3\right)^2+2\ge2\forall x\)

còn 1 đoạn nx bạn tự lm tiếp,lm giống như D

        

       

22 tháng 9 2019

a) \(4x^2+12x+10=\left(2x+3\right)^2+1\ge1\)

Dấu "="\(\Leftrightarrow x=-2\)

b) \(B=\left(3x-1\right)^2+4\ge4\)

Dấu "="\(\Leftrightarrow x=\frac{1}{3}\)

22 tháng 9 2019

a, \(A=4x^2+12x+10\)

       \(=\left(2x+1\right)^2+1\ge1\forall x\)

Dấu"=" xảy ra<=> \(\left(2x+1\right)^2=0\)

                     \(\Leftrightarrow x=\frac{-1}{2}\)

\(b,B=9x^2-6x+5\)

      \(=\left(3x-1\right)^2+4\ge4\forall x\)

Dấu"=" xảy ra<=> \(\left(3x-1\right)^2=0\)

                   \(\Leftrightarrow x=\frac{1}{3}\)

2 tháng 7 2017

Ta có : A = 4x2 - 12x + 10

= (2x)2 - 2.2x.3 + 9 + 1

= (2x - 3)2 + 1 

Mà : (2x - 3)2 \(\ge0\forall x\)

Nên : (2x - 3)2 + 1 \(\ge1\forall x\)

Vậy giá trị nhỏ nhất của A là 1 khi và chỉ khi x = \(\frac{3}{2}\)

2 tháng 7 2017

Ta có : x2 + 3x 

= x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}-\frac{9}{4}\)

\(\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà ; \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

=> \(\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\) \(\ge-\frac{9}{4}\)

Vậy GTNN của B là : \(-\frac{9}{4}\) khi và chỉ khi \(x=-\frac{3}{2}\)

30 tháng 9 2019

Ta có:

a) A = x2 + 6x + 10 = (x2 + 6x + 9) + 1 = (x + 3)2 + 1 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3

Vậy MinA = 1 <=> x = -3

b) B = 4x2 - 12x + 13 = 4(x2 - 3x + 9/4) + 4 = 4(x - 3/2)2 + 4 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy MinB = 4 <=> x = 3/2

22 tháng 6 2019

\(B=12x-8y-4x^2-y^2+1\)

\(=-\left(4x^2-12x+y^2+8y-1\right)\)

\(=-\left[\left(4x^2-12x+9\right)+\left(y^2+8y+16\right)-24\right]\)

\(=\left[\left(2x-3\right)^2+\left(y+4\right)^2-24\right]\)

\(=-\left(2x-3\right)^2-\left(y+4\right)^2+24\)

\(\Rightarrow B_{max}=24\Leftrightarrow-\left(2x-3\right)^2-\left(y+4\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2x-3=0\\y+4=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-4\end{cases}}}\)

22 tháng 6 2019

Ta có:  B = 12x - 8y - 4x2 - y2 + 1 = (-4x2 + 12x - 9) - (y2 + 8y + 16) + 26 = -4(x2 - 3x + 9/4) - (y + 4)2 + 26 = -4(x - 3/2)2 - (y + 4)2 + 26

Ta luôn có: -4(x - 3/2)2 \(\le\) 0 \(\forall\) x (vì  4(x - 3/2)2 \(\ge\)0 \(\forall\)x)

             -(y + 4)2 \(\le\) 0 \(\forall\)y  (vì (y + 4)2 \(\ge\)\(\forall\) y)

=> -4(x - 3/2)2 - (y + 4)2 + 26 \(\le\) 26 \(\forall\)x,y

hay B \(\le\) 26 \(\forall\)x, y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}x-\frac{3}{2}=0\\y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{3}{2}\\y=-4\end{cases}}\)

Vậy Bmax = 26 tại x = 3/2 và y = -4