Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-2x+y^2+6y+12\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi x=1 và y=-3
P = x2 + y2 - 2x + 6y + 12 = x2 + y2 - 2x + 6x + 1 + 9 + 2
=> P = (x2 - 2x + 1) + (y2 + 6y + 9) + 2
=> P = (x - 1)2 + (y + 3)2 + 2 \(\ge\)2
Đẳng thức xảy ra khi: (x - 1)2 = 0 và (y + 3)2 = 0 <=> x = 1 và y = -3
Vậy GTNN của P là 2 khi x = 1 và y = -3.
a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)
b/
1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Suy ra Min A = 7 <=> x = 2
2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Suy ra Min B = 1/4 <=> x = 1/2
3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
\(\ge-\frac{9}{2}\)
Suy ra Min N = -9/2 <=> x = 1/2
A = x2 - 10x + 12
= ( x2 - 10x + 25 ) - 13
= ( x - 5 )2 - 13
( x - 5 )2 ≥ 0 ∀ x => ( x - 5 )2 - 13 ≥ -13
Đẳng thức xảy ra <=> x - 5 = 0 => x = 5
=> MinA = -13 <=> x = 5
B = 6y2 + 4y - 1
= 6( y2 + 2/3y + 1/9 ) - 5/3
= 6( y + 1/3 )2 - 5/3
6( y + 1/3 )2 ≥ 0 ∀ x => 6( y + 1/3 )2 - 5/3 ≥ -5/3
Đẳng thức xảy ra <=> y + 1/3 = 0 => y = -1/3
=> MinB = -5/3 <=> y = -1/3
C = x2 + y2 - 2x - 6y - 1
= ( x2 - 2x + 1 ) + ( y2 - 6y + 9 ) - 11
= ( x - 1 )2 + ( y - 3 )2 - 11
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y-3\right)^2-11\ge-11\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
=> MinC = -11 <=> x = 1 ; y = 3
D = 2x2 + 3y2 - x - 3y + 5
= 2( x2 - 1/2x + 1/16 ) + 3( y2 - y + 1/4 ) + 33/8
= 2( x - 1/4 )2 + 3( y - 1/2 )2 + 33/8
\(\hept{\begin{cases}2\left(x-\frac{1}{4}\right)^2\ge0\forall x\\3\left(y-\frac{1}{2}\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x-\frac{1}{4}\right)^2+3\left(y-\frac{1}{2}\right)^2+\frac{33}{8}\ge\frac{33}{8}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{4}=0\\y-\frac{1}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{1}{2}\end{cases}}\)
=> MinD = 33/8 <=> x = 1/4 ; y = 1/2
Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)
a)
\(A=x^2+y^2-x+6y+10.\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)
b)
\(B=2x-2x^2-5\)
\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(4x-x^2-12=-x^2+4x-4-8=-\left(x-4x+4\right)-8=-\left(x-2\right)^2-8\le8\)
=> GTLN của đa thức là 8
<=> x-2 = 0
<=> x = 2
\(x^2+y^2-x+6y+15\)
\(=x^2-2.x.\frac{1}{2}+\frac{1}{4}+y^2+2.y.3+9+\frac{23}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{23}{4}\ge\frac{23}{4}\)
=> GTNN của đa thức là 23/4
<=> x-1/2=0 và y+3=0
<=> x=1/2 và y=-3
\(A=x^2+4x+5=\left(x+2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x=-2\)
\(B=x^2+10x-1=\left(x+5\right)^2-26\ge-26\)
Dấu \("="\Leftrightarrow x=-5\)
\(C=5-4x+4x^2=\left(2x-1\right)^2+4\ge4\)
Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)
\(D=x^2+y^2-2x+6y-3=\left(x-1\right)^2+\left(y+3\right)^2-13\ge-13\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
\(E=2x^2+y^2+2xy+2x+3=\left(x+y\right)^2+\left(x+1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow x=-y=-1\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(A=x^2+4x+5\)
\(=x^2+4x+4+1\)
\(=\left(x+2\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=-2
\(C=4x^2-4x+5\)
\(=4x^2-4x+1+4\)
\(=\left(2x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
b) Ta có: P = x2 + y2 – 2x + 6y+ 12
P = (x2 – 2x + 1) + (y2 + 6y + 9) + 2
P = (x – 1)2 + (y + 3)2 + 2 ≥ 2 vì (x – 1)2 ≥ 0; (y + 3)2 ≥ 0, với mọi x, y
Vậy giá trị nhỏ nhất của P bằng 2
Dấu “=” xảy ra khi x – 1 = 0 và y + 3 = 0 ⇒ x = 1 và y = -3
M = x ^2 - x + 1/4 + y ^2 + 6y + 9 + 3/4
M =( x - 1/4 ) ^2 + ( y + 3 ) ^2 + 3/4
M > = 3/4 với mọi x; y
Dấu bằng <=> x = 1/4 và y = -3
Vậy GTNN của M bằng 3/4 <=> x = 1/4; y = 3
M=x^2-x+1/4+y^2+6y+9+3/4
M=(x-1/4)^2+(y+3)^2+3/4
M >= 3/4 với mọi x; y
Dấu bằng <=> x = 1/4 và y = -3
Vậy GTNN của M bằng 3/4 <=> x = 1/4; y = 3
\(P=x^2+y^2-2x+6y+12\)
\(=\left(x^2-2x+1\right)+\left(y^2-6y+9\right)+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
Vậy GTNN là 2 đạt được khi \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
GTNN của P=12