K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 10 2024

\(M=\left(x^2+2xy+y^2\right)-4\left(x+y\right)+4+\left(2x^2-4x+2\right)+2022\)

\(=\left(x+y\right)^2-4\left(x+y\right)+4+2\left(x-1\right)+2022\)

\(=\left(x+y-2\right)^2+2\left(x-1\right)^2+2022\)

Do \(\left\{{}\begin{matrix}\left(x+y-2\right)^2\ge0\\2\left(x-1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)

\(\Rightarrow M\ge2022\)

Vậy \(M_{min}=2022\) khi \(\left\{{}\begin{matrix}x+y-2=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow x=y=1\)

16 tháng 8 2015

 

M= x2 +2y2 +2xy -4y +5

=x2+2xy+y2+y2-4y+4+1

=(x+y)2+(y-2)2+1

Vì \(\left(x+y\right)^2\ge0;\left(y-2\right)^2\ge0\)

nên: \(\left(x+y\right)^2+\left(y-2\right)^2+1\ge1\)

 Dấu "=" xảy ra khi:

y-2=0 và x+y=0

<=>y=2 và x+2=0

<=>y=2 và x=-2

Vậy GTNN của M là 1 tại x=-2;y=2

29 tháng 10 2020

\(P=3x^2+y^2-2xy-3x+2\)

\(=x^2-2xy+y^2+2x^2-3x+2\)

\(=\left(x-y\right)^2+2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\)

do\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-\frac{3}{4}\right)^2\ge0\end{cases}\Rightarrow P\ge\frac{7}{8}}\)

\(\Rightarrow P_{min}=\frac{7}{8}\)đạt được khi \(x=y=\frac{3}{4}\)

1 tháng 7 2019

\(A=x^2+4y^2-2xy+4x-10y+2020.\)

\(=\left(x^2-2xy+y^2\right)+\left(3y^2-6y+3\right)+\left(4x-4y\right)+2017\)

\(=\left(x-y\right)^2+3\left(y-1\right)^2+4\left(x-y\right)+2017\)

\(=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]+3\left(y-1\right)^2+2013\)

\(=\left(x-y+2\right)^2+3\left(y-1\right)^2+2013\)

\(A_{min}=2013\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-y+2=0\\y=1\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

1 tháng 7 2019

\(B=8x^2+y^2-4xy-12x+2y+30\)

\(=\left(4x^2-4xy+y^2\right)+\left(4x^2-8x+4\right)-\left(4x-2y\right)+26\)

\(=\left(2x-y\right)^2+4\left(x-1\right)^2-2\left(2x-y\right)+26\)

\(=\left[\left(2x-y\right)^2-2\left(2x-y\right)+1\right]+4\left(x-1\right)^2+25\)

\(=\left(2x-y-1\right)^2+4\left(x-1\right)^2+25\)

\(\Rightarrow B_{min}=25\)\(\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x-y-1=0\\x=1\end{cases}}\)\(\Leftrightarrow x=y=1\)

1 tháng 5 2017

Để D có giá trị nhỏ nhất thì x^2 ;4y^2 ;2xy; 6y; 10(x-y) phải có giá trị nhỏ nhất

   Mà x^2 >0 hoặc x^2=0 ( với mọi x)

        4y^2 >0 hoặc 4y^2 =0 (với mọi y)

  =>  x^2 =0   suy ra x =0         (4)

       4y^2 =0    suy ra y =0          (5)

ta có x= 0 ;y=0    => 6y =0 (1)

                               2xy = 0  (2)

                               10(x-y)=0  (3)

Từ (1);(2);(3);(4);(5) => D= 0+0-0-0-0+32

                                => D= 32

k minh nha

1 tháng 5 2017

Ta có:

\(D=x^2+4y^2-2xy-6y-10\left(x-y\right)+32\)

\(=x^2+4y^2-2xy+4y-12x+32\)

\(=\left(x^2+y^2+36-2xy-12x+12y\right)+\left(3y^2-8y+\frac{16}{3}\right)-\frac{28}{3}\)

\(=\left(x-y-6\right)^2+\left(\sqrt{3}y-\frac{4}{\sqrt{3}}\right)^2-\frac{28}{3}\ge-\frac{28}{3}\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-6=0\\\sqrt{3}y-\frac{4}{\sqrt{3}}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{22}{3}\\y=\frac{4}{3}\end{cases}}\)

Vậy \(D_{min}=-\frac{28}{3}\Leftrightarrow\hept{\begin{cases}x=\frac{22}{3}\\y=\frac{4}{3}\end{cases}}\)

28 tháng 12 2017

Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0

--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0

--> (x+y+2)^2 + y^2 = 1

-->(x+y+2)^2 <= 1 ( vì y^2 >=1)

--> -1 <= x+y+2 <=1

--> 2015 <= x+y+2018 <= 2017

hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3

Q<=2017, dau bang xay ra khi  x+y+2=1 --> x+y=-1

Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3

 giá trị lớn nhất của Q là 2017 khi x+y=-1

14 tháng 5 2020

giá trị lớn nhất là 2017

2 tháng 9 2018

C = \(y^2-2xy+x^2+2x^2-7\)

   = \(\left(y-x\right)^2+2x^2-7\)

Do \(\left(y-x\right)^2\ge0\)

      \(2x^2\ge0\)

=> \(\left(y-x\right)^2+2x^2-7\ge7\)

Min C = 7 <=> \(\hept{\begin{cases}2x^2=0=>x^2=0=>x=0\\y-x=0=>y=0\end{cases}}\)

19 tháng 9 2020

a) Đặt \(A=x^2-2x+1\)

    Ta có: \(A=x^2-2x+1=\left(x-1\right)^2\)

     Vì \(\left(x-1\right)^2\ge0\forall x\)

    \(\Rightarrow A_{min}=0\)

    Dấu "=" xảy ra khi: \(x-1=0\)

                            \(\Leftrightarrow x=1\)

Vậy \(A_{min}=0\)\(\Leftrightarrow\)\(x=1\)

19 tháng 9 2020

b) Ta có: \(M=x^2-3x+10\)

        \(\Leftrightarrow M=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)

        \(\Leftrightarrow M=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)

    Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)

     \(\Rightarrow\)\(M_{min}=\frac{31}{4}\)

    Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\)

                            \(\Leftrightarrow x=\frac{3}{2}\)

Vậy \(M_{min}=\frac{31}{4}\)\(\Leftrightarrow\)\(x=\frac{3}{2}\)

22 tháng 12 2016

trước tiên bạn nên đưa về dạng tổng hai bình phương 

P = x2 + 2y2 + 2xy – 6x – 8y + 2028

P = (x2 + y2 + 2xy) – 6(x + y) + 9 + y2 – 2y + 1 + 2018

P = (x + y – 3)2 + (y – 1)2 + 2018 \(\ge\) 2018

=> Giá trị nhỏ nhất của P = 2018 khi x = 2; y = 1

23 tháng 5 2019

P=x2+2y2+2xy-6x-8y+2028

=x2+2xy+y2+y2-8y+x2-6x-x2+2028

=(x2+2xy+y2)+(y2-8y+16)+(x2-6x+9)-x2+2028-16-9

=(x-y)2+(y-4)2+(x-3)2-x2+2003\(\ge2003\)

\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y-4\right)^2\ge0\\\left(x-3\right)^2\ge0\\x^2\ge0\end{matrix}\right.\) nên:

Để P=2003 thì :

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-3\right)^2=0\\\left(y-4\right)^2=0\\x^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-3=0\\y-4=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=4\\x=0\end{matrix}\right.\)

Vậy min P=2003\(\Leftrightarrow\left(x=y\right)\in\left\{0;4;3\right\}\)