K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

Ta có :  (x-2019)2018 luôn lớn hơn hoặc bằng 0 nên M sẽ luôn lớn hơn hoặc bằng 2018.Vậy giá trị nhỏ nhất của M là 2018

\(M=2018+\left(x-2019\right)^{2018}\ge2018\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-2019\right)^2=0\)\(\Leftrightarrow\)\(x=2019\)

Vậy GTNN của \(M\) là \(2018\) khi \(x=2019\)

tym tym :> 

26 tháng 9 2018

có |của một số|>0

==>giá trị nhỏ nhất của F =1

=> x=2018

26 tháng 9 2018

\(F=\left|2018-x\right|+\left|2019-x\right|\)

     \(=\left|2018-x\right|+\left|x-2019\right|\)

Ta có :

\(\left|2018-x\right|+\left|x-2019\right|\ge\left|2018-x+x-2019\right|\)

=> \(F\ge\left|-1\right|\)

=> \(F\ge1\)

Dấu = xảy ra khi : ( 2018 - x ) ( x - 2019 ) > 0

TH1 : \(\hept{\begin{cases}2018-x>0\\x-2019>0\end{cases}}\)

=> \(\hept{\begin{cases}x< 2018\\x>2019\end{cases}}\)

=> 2019 < x < 2018 ( vô lí - loại )

TH2 : \(\hept{\begin{cases}2018-x< 0\\x-2019< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>2018\\x< 2019\end{cases}}\)

=> 2018 < x < 2019

Vậy giá trị nhỏ nhất của F là 1 khi x thỏa mãn 2018 < x < 2019

11 tháng 3 2022

\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)

\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)

\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)

\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)

\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)

23 tháng 10 2018

Vì \(\left|x-2019\right|\ge0\forall x\)

\(\Rightarrow A\ge2018\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)

Vậy Amin = 2018 <=> x = 2019

6 tháng 3 2020

\(M=2019\left(x-2y\right)^{2018}-\left(6y-3y\right)^{2018}-\left|xy-2\right|\\ \)

\(Do\left(x-2y\right)^{2018}\ge0\Rightarrow2019\left(x-2y\right)^{2019}\)

\(\left(6y-3x\right)^{2018}\ge0\Rightarrow-\left(6y-3x\right)^{2018}\le0\)

\(\left|xy-2\right|\ge0\Rightarrow-\left|xy-2\right|\le0\)=>\(M\le0-0-0=0.\)

GIá tri lon nhat cua Mla 0 khi va chi khi

\(\hept{\begin{cases}x-2y=0\\6y-3x=0\\xy-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2y\\6y=3x\\xy=2\end{cases}\Rightarrow\hept{\begin{cases}x=2y\\y=\frac{1}{2}x\\xy=2\end{cases}}}\)

\(\Rightarrow xy=2y.y=2y^2\Rightarrow y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\)

vay ..........

5 tháng 9 2018

b, tìm x,y biết |x-2018|+|y+2019|=0

\(\Rightarrow\hept{\begin{cases}|x-2018|=0\\|y+2019|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}\)

vậy x=2018 ; y=-2019

5 tháng 9 2018

a) 

ta có \(\hept{\begin{cases}\left|x\right|\ge0\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\left|x\right|+\left|y+1\right|\ge0\Rightarrow A_{min}=0\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

b)

ta có \(\hept{\begin{cases}\left|x-2018\right|\ge0\\\left|y+2019\right|\ge0\end{cases}}\)

mà \(\left|x-2018\right|+\left|y+2019\right|=0\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}}\)

NV
14 tháng 10 2019

\(P=\left|x-2018\right|+\left|2020-x\right|+\left|x-2019\right|\)

\(P\ge\left|x-2018+2020-x\right|+\left|x-2019\right|=2+\left|x-2019\right|\ge2\)

\(\Rightarrow P_{min}=2\) khi \(x=2019\)

DD
6 tháng 2 2021

Với \(x-2018>0\Leftrightarrow x>2018\)

\(A=x-2018+x-1=2x-2019>2.2018-2019=2017\)

Với \(x-2018\le0\Leftrightarrow x\le2018\)

\(A=2018-x+x-1=2017\)

Vậy \(minA=2017\)đạt tại \(x\le2018\).

6 tháng 2 2021

min A=2017 nha bạn