Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=\left|2018-x\right|+\left|2019-x\right|\)
\(=\left|2018-x\right|+\left|x-2019\right|\)
Ta có :
\(\left|2018-x\right|+\left|x-2019\right|\ge\left|2018-x+x-2019\right|\)
=> \(F\ge\left|-1\right|\)
=> \(F\ge1\)
Dấu = xảy ra khi : ( 2018 - x ) ( x - 2019 ) > 0
TH1 : \(\hept{\begin{cases}2018-x>0\\x-2019>0\end{cases}}\)
=> \(\hept{\begin{cases}x< 2018\\x>2019\end{cases}}\)
=> 2019 < x < 2018 ( vô lí - loại )
TH2 : \(\hept{\begin{cases}2018-x< 0\\x-2019< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>2018\\x< 2019\end{cases}}\)
=> 2018 < x < 2019
Vậy giá trị nhỏ nhất của F là 1 khi x thỏa mãn 2018 < x < 2019
\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)
\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)
\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)
\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)
\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)
Vì \(\left|x-2019\right|\ge0\forall x\)
\(\Rightarrow A\ge2018\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
Vậy Amin = 2018 <=> x = 2019
\(M=2019\left(x-2y\right)^{2018}-\left(6y-3y\right)^{2018}-\left|xy-2\right|\\ \)
\(Do\left(x-2y\right)^{2018}\ge0\Rightarrow2019\left(x-2y\right)^{2019}\)
\(\left(6y-3x\right)^{2018}\ge0\Rightarrow-\left(6y-3x\right)^{2018}\le0\)
\(\left|xy-2\right|\ge0\Rightarrow-\left|xy-2\right|\le0\)=>\(M\le0-0-0=0.\)
GIá tri lon nhat cua Mla 0 khi va chi khi
\(\hept{\begin{cases}x-2y=0\\6y-3x=0\\xy-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2y\\6y=3x\\xy=2\end{cases}\Rightarrow\hept{\begin{cases}x=2y\\y=\frac{1}{2}x\\xy=2\end{cases}}}\)
\(\Rightarrow xy=2y.y=2y^2\Rightarrow y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\)
vay ..........
b, tìm x,y biết |x-2018|+|y+2019|=0
\(\Rightarrow\hept{\begin{cases}|x-2018|=0\\|y+2019|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}\)
vậy x=2018 ; y=-2019
a)
ta có \(\hept{\begin{cases}\left|x\right|\ge0\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\left|x\right|+\left|y+1\right|\ge0\Rightarrow A_{min}=0\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
b)
ta có \(\hept{\begin{cases}\left|x-2018\right|\ge0\\\left|y+2019\right|\ge0\end{cases}}\)
mà \(\left|x-2018\right|+\left|y+2019\right|=0\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}}\)
\(P=\left|x-2018\right|+\left|2020-x\right|+\left|x-2019\right|\)
\(P\ge\left|x-2018+2020-x\right|+\left|x-2019\right|=2+\left|x-2019\right|\ge2\)
\(\Rightarrow P_{min}=2\) khi \(x=2019\)
Với \(x-2018>0\Leftrightarrow x>2018\):
\(A=x-2018+x-1=2x-2019>2.2018-2019=2017\)
Với \(x-2018\le0\Leftrightarrow x\le2018\):
\(A=2018-x+x-1=2017\)
Vậy \(minA=2017\)đạt tại \(x\le2018\).
Ta có : (x-2019)2018 luôn lớn hơn hoặc bằng 0 nên M sẽ luôn lớn hơn hoặc bằng 2018.Vậy giá trị nhỏ nhất của M là 2018
\(M=2018+\left(x-2019\right)^{2018}\ge2018\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-2019\right)^2=0\)\(\Leftrightarrow\)\(x=2019\)
Vậy GTNN của \(M\) là \(2018\) khi \(x=2019\)
tym tym :>