Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=1000-\left|x+5\right|\le1000\forall x\)
Dấu '=' xảy ra khi x=-5
b: \(\left|x-3\right|+50\ge50\forall x\)
Dấu '=' xảy ra khi x=3
+, |x-7|=x-7 khi x>=7 , ta có:
x-7+6-x=-7+6=-1 (1)
+, |x-7|=7-x khi x<=7 , ta có:
7-x+6-x=13-2x suy ra -2x<=-14 suy ra 13-2x <=13-14
Suy ra 13-2x =-1 (2)
Từ (1) và (2) suy ra GTNN của A là -1 khi và chỉ khi x-7=0 suy ra x=7
Nếu đúng thì tích cho mk nha
Vì x<= 7
Ta có :
\(\left|x-y\right|\ge0;\left|x+1\right|\ge0\)
\(\Rightarrow A=\left|x-y\right|+\left|x+1\right|+2018\ge2018\forall xy\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\x=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)
Vậy ...
\(A=\left|x-y\right|+\left|x+1\right|+2018\)
Mà \(\left|x-y\right|;\left|x+1\right|\ge0\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\forall x;y\)
\(\Rightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\x=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)
Vậy A = 2018 khi x;y = -1
( +) Ix - 7I = x -7 khi x > = 7 , ta có:
x - 7 + 6 -x = - 7 + 6 = - 1 (2)
( + ) I x - 7 I = 7 - x khi x < = 7 , ta có:
7-x + 6 - x = 13 - 2x
Vì x < = 7 => -2x <= - 14 => 13 - 2x <= 13 - 14
=> 13 - 2x <= -1 ( 1 )
Từ (1) và (2) => GTNN của A là - 1 khi và chỉ khi x - 7 = 0 =>x = 7
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
A = | 3 - x | + 4
Vì | 3 - x | ≥ 0 ∀ x => | 3 - x | + 4 ≥ 4 ∀ x
Dấu "=" xảy ra khi x = 3
=> MinA = 4
B = ( x + 1 )2 + 6
Vì ( x + 1 )2 ≥ 0 ∀ x => ( x + 1 )2 + 6 ≥ 6 ∀ x
Dấu "=" xảy ra khi x = -1
=> MinB = 6
|3-x|lớn hơn hoặc = 0 với mọi x
suy ra |3-x|+4 lớn hơn hoặc bằng 4, suy ra A lớn hơn hoặc bằng 4
dấu = xảy ra khi 3-x=0, x=3
vậy giá trị nhỏ nhất của A=4 khi x=3
(x+1)2lớn hơn hoặc bằng 0 với mọi x
suy ra (x+1)2+6 lớn hơn hoặc bằng 6, suy ra b lớn hơn hoặc bằng 6
dấu = xảy ra khi (x+1)2=0, x+1=0, x=-1
vậy giá trị nhỏ nhất của B=6 khi x=-1
để A nhỏ nhất thì Ix-3I+Ix+1I nhỏ nhất
\(\Leftrightarrow\)Ix-3+x+1I nhỏ nhất
\(\Leftrightarrow\)Ix+x+1-3I nhỏ nhất
\(\Leftrightarrow\)I2x+(-2)I nhỏ nhất
Ta có: I2x+(-2)I > hoac = 0
\(\Rightarrow\)Để A nhỏ nhất thì I2x+(-2)I=0
\(\Leftrightarrow\)2x+(-2) =0
\(\Leftrightarrow\)2x=2
\(\Leftrightarrow\)x=1
vậy A = 0 với x=1
x=3,x=0