K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

A=\(5x^2+2y^2+4xy-2x+4y+2005=4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+2000=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+2000\)

Ta có \(\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2\ge0\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+2000\ge2000\)

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}2x+y=0\\x-1=0\\y+2=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy GTNN của A là 2000

6 tháng 8 2017

A= \(\left(x^2-4xy+4y^2\right)\) +\(\left(x^2+2x+1\right)+4\) 

 =\(\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4\) 

dau "=" xay ra \(\Leftrightarrow x=-1,y=\frac{-1}{2}\)

min A =4 khi x=-1 .y=-1/2

NV
19 tháng 8 2021

\(S=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-4y+4\right)+2021\)

\(S=\left(x+y+1\right)^2+\left(y-2\right)^2+2021\ge2021\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-3;2\right)\)

11 tháng 12 2018

\(P=x^{2}+y^{2}+\frac{1}{(4-\frac{1}{x}-\frac{1}{y})^{2}}\geq x^{2}+1+\frac{1}{(3-\frac{1}{x})^{2}}=x^{2}+1+\frac{x^{2}}{(3x-1)^{2}}\) ( do \(y\geq 1)\)

\(x> \frac{1}{3}=>3x-1> 0 \)

Áp dụng bất đẳng thức Cô-si cho 2 số dương: 

\(x^{2}+\frac{x^{2}}{4(3x-1)^{2}}\geq 2\sqrt{x^{2}.\frac{x^{2}}{4(3x-1)^{2}}}=\frac{x^{2}}{3x-1}\)

Ta cm: \(\frac{x^{2}}{3x-1}\geq \frac{1}{2}<=>2x^{2}\geq 3x-1<=>(x-1)(2x-1)\geq 0\) đúng do \(\frac{1}{3}< x\leq \frac{1}{2}\)

\(1+\frac{3x^{2}}{4(3x-1)^{2}}=\frac{1}{4}+\frac{3}{4}(1+\frac{x^{2}}{(3x-1)^{2}})\geq \frac{1}{4}+\frac{3}{4}.2.\frac{x}{3x-1}\geq \frac{1}{4}+\frac{3}{4}.2=\frac{7}{4}\)

Do \(\frac{x}{3x-1}=\frac{1}{3}.\frac{3x}{3x-1}=\frac{1}{3}(1+\frac{1}{3x-1})\geq \frac{1}{3}(1+\frac{1}{\frac{3}{2}-1})=1\)

\(<=>y=1,x=\frac{1}{2}\)

Phù ~ THỞ PHÀO NHẸ NHÕM

11 tháng 11 2015

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2+9}+\sqrt{\left(x+1\right)^2+4}\ge\sqrt{\left(3-x\right)^2+3^2}+\sqrt{\left(x+1\right)^2+2^2}\)

\(\ge\sqrt{\left(3-x+x+1\right)^2+\left(3+2\right)^2}\text{ }\left(Mincopxki\right)\)

\(=\sqrt{41}\)

Đẳng thức xảy ra khi \(y+1=0\text{ và }\frac{3-x}{x+1}=\frac{3}{2}\Leftrightarrow y=-1;\text{ }x=\frac{3}{5}.\)

Vậy GTNN của A là \(\sqrt{41}\)

5 tháng 7 2016

\(A=\sqrt{x^2-6x+9+2\left(y^2+2y+1\right)}+\sqrt{x^2+2x+1+3\left(y^2+2y+1\right)}.\)

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)

Với mọi giá trị được xác định của x; giá trị của biến y không phụ thuộc vào x, ta luôn có:

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\le\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+1\right)^2}\)(1)

Dấu "=" khi y = -1.

(1) \(\Rightarrow A\le\left|x-3\right|+\left|x+1\right|\)(2)

  • \(x< -1\)(2) \(\Rightarrow A\le-\left(x-3\right)-\left(x+1\right)=-2x+2>4\forall x< -1\)
  • \(-1\le x\le3\)(2) \(\Rightarrow A\le-\left(x-3\right)+\left(x+1\right)=4\forall-1\le x\le3\)
  • \(x>3\)(2) \(\Rightarrow A\le\left(x-3\right)+\left(x+1\right)=2x-2>4\forall x>3\)

Vậy GTNN của A = 4 khi -1<= x <= 3 và y = -1.

24 tháng 11 2019

\(A=-\left(4x^2-4xy+y^2\right)-\left(y^2-2y+1\right)+4\)

\(A=4-\left(2x-y\right)^2-\left(y-1\right)^2\le4\)

\(A_{max}=4\) khi \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)

Chúc bạn học tốt !!!

\(-4x^2+4xy-2y^2+2y+3\)

\(=-\left(4x^2+4xy+y^2\right)-\left(y^2-2y+1\right)+4\)

\(=-\left(2x+y\right)^2-\left(y-1\right)^2+4\)

Ta có \(\left(2x+y\right)^2\ge0\)  \(\forall x,y\) \(;\left(y-1\right)^2\ge0\)  \(\forall y\)

=> \(\left(2x+y\right)^2+\left(y-1\right)^2\ge0\)   \(\forall x,y\)

=> \(-\left(2x+y\right)^2-\left(y-1\right)^2\le0\)  \(\forall x,y\)

=> \(-\left(2x+y\right)-\left(y-1\right)^2+4\le4\)  \(\forall x,y\)

\(MaxA=4\Leftrightarrow\hept{\begin{cases}\left(y-1\right)^2=0\\\left(2x+y\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}y-1=0\\2x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\x=-\frac{1}{2}\end{cases}}}\)