Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
a) \(\left(\frac{x+3}{x-2}+\frac{x+2}{3-x}+\frac{x+2}{x^2-5x+6}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{x^2-2x-3x+6}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{x^2-9-x^2+4+x+2}{\left(x-2\right)\left(x-3\right)}\right).\frac{x+1}{1-x}\)
=\(\frac{-3+x}{\left(x-2\right)\left(x-3\right)}.\frac{x+1}{1-x}\)
=\(\frac{1}{\left(x-2\right)}.\frac{x+1}{1-x}\)
=\(\frac{x+1}{\left(x-2\right)\left(1-x\right)}\)
b) Để A >1 \(\Leftrightarrow\frac{x+1}{\left(x-2\right)\left(1-x\right)}>1\)
\(\Leftrightarrow\frac{-\left(1-x\right)\left(3-x\right)}{\left(x-2\right)\left(1-x\right)}\)
\(\Leftrightarrow\frac{x-3}{x-2}>0\)
\(\Rightarrow\orbr{\begin{cases}x-3\ge0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge3\\x>2\end{cases}\Leftrightarrow}x\ge3}\)
\(\Rightarrow\orbr{\begin{cases}x-3< 0\\x-2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< 2\end{cases}\Leftrightarrow}x< 2}\)
Vậy ...
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x=a\)
\(\Rightarrow A=\left(a-6\right)\left(a+6\right)\)
\(=a^2-6\)
\(\Rightarrow A_{min}=-6\Leftrightarrow a^2=0\Rightarrow a=0\)
\(\Leftrightarrow x^2+5x=0\)
\(\Rightarrow x\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy \(A_{min}=-6\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
#)Giải :
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
=> Giá trị nhỏ nhất biểu thức đã cho là -36 xảy ra khi và chỉ khi \(\left(x^2-5x\right)^2=0\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
#~Will~be~Pens~#
1:
ĐKXĐ: \(x\notin\left\{3;-2;1\right\}\)
\(A=\left(\dfrac{x\left(x+2\right)-x+1}{\left(x-3\right)\left(x+2\right)}\right):\left(\dfrac{x\left(x-3\right)+5x+1}{\left(x+2\right)\left(x-3\right)}\right)\)
\(=\dfrac{x^2+2x-x+1}{\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(x+2\right)\left(x-3\right)}{x^2-3x+5x+1}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)^2}\)
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
A=(x-1)(x+2)(x+3)(x+6)
=(x2+5x-6)(x2+5x+6)
Đặt x2+5x-6=t ta đc
t(t+12)=t2+12t
=t2+12t+36-36
=(t+6)2-36\(\ge-36\)
=>\(A\ge-36\)
Dấu = khi t=-6 <=>x2+5x-6=-6 <=>x=-5 hoặc x=0
Vậy MinA=-6 khi x=0 hoặc x=-5
A=(x-1)(x+6)(x+2)(x+3)
A=(x2+6x-x-6)(x2+2x+3x+6)
A=(x2+5x-6)(x2+5x+6)
A=(x2+5x)2+36≥36
Dấu "=" xảy ra khi và chỉ khi :
(x2+5x)2=0
→x2+5x=0
→x(x+5)=0
→x=0 hoặc x+5=0
→x=0 hoặc x=-5
A = (x-1)(x+2)(x+3)(x+6)
= (x-1)(x+6)(x+3)(x+2)
= (x² + 5x - 6)(x² + 5x + 6)
Đặt x² + 5x = a => A= (a - 6)(a + 6) = a² - 36 ≥ -36
Dấu = xảy ra <=> a = 0 <=> x² + 5x = 0 <=> x = 0 hoặc x = -5
Vậy min A = -36 <=> x = 0 hoặc x = -5
\(A=-36\Leftrightarrow x=0\) và \(x=-5\)