Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :\(a^2-ab+b^2=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\dfrac{3}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)(theo BĐT AM-GM)
\(\Rightarrow P\ge\sum\dfrac{a+b}{2\sqrt{ab+1}}\)
ÁP dụng BĐT AM-GM:
\(\dfrac{a+b}{2\sqrt{ab+1}}+\dfrac{b+c}{2\sqrt{bc+1}}+\dfrac{c+a}{2\sqrt{ca+1}}\ge3\sqrt[3]{\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8\sqrt{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}}}=\dfrac{3}{2}.\dfrac{1}{\sqrt[3]{\sqrt{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}}}\)
Mà \(\sqrt[3]{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}\le\dfrac{1}{3}\left(ab+bc+ca+3\right)\)
\(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2\sqrt{\left(ab+bc+ca+3\right)}}\)(*)
ta liên tưởng đến BĐT phụ:\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)
Cm: phân tích :\(VT=xy\left(x+y\right)+yz\left(y+z\right)+zx\left(x+z\right)+2xyz\)
\(=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)+3xyz-xyz\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)-xyz\)
mà \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}=9xyz\)
nên \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\left(x+y+z\right)\left(xy+yz+xz\right)-\dfrac{1}{9}\left(x+y+z\right)\left(xy+yz+xz\right)=\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
Áp dụng:
\(1=\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
mặt khác,theo AM-GM,dễ dàng chứng minh được \(a+b+c\ge\dfrac{3}{2}\)
nên \(1\ge\dfrac{8}{9}.\dfrac{3}{2}\left(ab+bc+ca\right)\Leftrightarrow ab+bc+ca\le\dfrac{3}{4}\)
từ (*)\(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2\sqrt{\dfrac{3}{4}+3}}=\dfrac{3}{\sqrt{5}}\)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{2}\)
a) CM:\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
\(\Leftrightarrow n+1+n=\left(n+1-n\right)\left(n+1+n\right)\)
\(\Leftrightarrow2n+1=1\left(2n+1\right)\)
\(\Leftrightarrow2n+1=2n+1\)
\(\Rightarrow\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
Câu b) ý 2:
Áp dụng BĐT cô si ta có :
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\\ \dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\\ \dfrac{c}{a}+\dfrac{a}{b}\ge2\sqrt{\dfrac{c}{b}}\\ \Leftrightarrow2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\ge2\left(\sqrt{\dfrac{a}{c}}+\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}\right)\\ \Rightarrowđpcm\)
Lời giải:
Áp dụng BĐT AM-GM ngược dấu ta có:
\(A=\frac{ab}{\sqrt{c+ab}}+\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ac}}=\frac{ab}{\sqrt{c(a+b+c)+ab}}+\frac{bc}{\sqrt{a(a+b+c)+bc}}+\frac{ca}{\sqrt{b(a+b+c)+ac}}\)
\(=\frac{ab}{\sqrt{(c+a)(c+b)}}+\frac{bc}{\sqrt{(a+b)(a+c)}}+\frac{ca}{\sqrt{(b+a)(b+c)}}\)
\(\leq \frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)+\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)+\frac{1}{2}\left(\frac{ca}{b+a}+\frac{ca}{b+c}\right)\)
\(A\leq \frac{1}{2}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{bc+ac}{a+b}\right)=\frac{1}{2}(b+a+c)=\frac{1}{2}\)
Vậy \(A_{\max}=\frac{1}{2}\) tại \(a=b=c=\frac{1}{3}\)
Lời giải:
Từ \(ab+bc+ac=1\Rightarrow a^2+ab+bc+ac=a^2+1\)
\(\Leftrightarrow (a+b)(a+c)=a^2+1\)
Tương tự: \(\left\{\begin{matrix} b^2+1=(b+c)(b+a)\\ c^2+1=(c+a)(c+b)\end{matrix}\right.\)
Khi đó:
\(A=\frac{(b^2+bc)(c^2+ca)(a^2+ab)}{\sqrt{(a^4+a^2)(b^4+b^2)(c^4+c^2)}}\) \(=\frac{b(b+c)c(c+a)a(a+b)}{\sqrt{a^2b^2c^2(a^2+1)(b^2+1)(c^2+1)}}\)
\(=\frac{abc(a+b)(b+c)(c+a)}{abc\sqrt{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}}\) \(=\frac{abc(a+b)(b+c)(c+a)}{abc(a+b)(b+c)(c+a)}=1\)
Vậy \(A=1\)
có phải/....
1) \(A=\dfrac{x+3}{\sqrt{x}-2}\)
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-2}{x-4}\) hay \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\left(\sqrt{x}-2\right)}{x-4}\)
2) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1
=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)
Em thay vào tính nhé!
c) với x>1
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Áp dụng bất đẳng thức Cosi
A\(\ge2\sqrt{2}+3\)
Xét dấu bằng xảy ra ....
\(\sqrt{\dfrac{a+b}{c+ab}}+\sqrt{\dfrac{b+c}{a+bc}}+\sqrt{\dfrac{c+a}{b+ac}}\)
Bài này có xuất hiện rồi ,you vào mục tìm kiếm là thấy liền.
Lời giải vắn tắt:
\(A=\sum\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}=\sum\dfrac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(1+ab-c^2\right)}}\ge\sum\dfrac{2\left(ab+2c^2\right)}{1+2ab+c^2}=\sum\dfrac{2\left(ab+2c^2\right)}{\left(a+b\right)^2+2c^2}\ge\sum\dfrac{2\left(ab+2c^2\right)}{2\left(a^2+b^2\right)+2c^2}=\sum\left(ab+2c^2\right)=ab+bc+ca+2\)
( thay \(a^2+b^2+c^2=1\))
a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)
\(=a-1\)
b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)
\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)
c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)
\(A=2\sqrt{2}\left(\dfrac{a}{2\sqrt{2b\left(a+b\right)}}+\dfrac{b}{2\sqrt{2c\left(b+c\right)}}+\dfrac{a}{2\sqrt{2a\left(c+a\right)}}\right)\)
\(A\ge2\sqrt{2}\left(\dfrac{a}{2b+a+b}+\dfrac{b}{2c+b+c}+\dfrac{a}{2a+c+a}\right)\)
\(A\ge2\sqrt{2}\left(\dfrac{a^2}{a^2+3ab}+\dfrac{b^2}{b^2+3bc}+\dfrac{c^2}{c^2+3ca}\right)\)
\(A\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}=\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\)
\(A\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{3\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Bổ sung các bđt được áp dụng trong bài thầy Lâm cho rõ ràng:
Áp dụng Bđt Cauchy và Bunhiacopxki :
\(a+3b=2b+\left(a+b\right)\ge2\sqrt[]{2b\left(a+b\right)}\)
\(ab+bc+ca\le\sqrt[]{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}=a^2+b^2+c^2\)