K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

A = |x - 1| + |x + 5| + (x - 2)2 + 2017

A = |x - 1| + |x + 5| + |(x - 2)2| + 2017

A = |x - 1| + |x + 5| + |x2 + 4 - 4x| + 2017

Áp dụng bđt |a| + |b| + |c| \(\ge\)|a+b+c| ta có:

A = |x - 1| + |x + 5| + |x2 + 4 - 4x| + 2017 \(\ge\)|x - 1 + x + 5 + x2 + 4 - 4x| + 2017

A\(\ge\) |x2 - 2x + 8| + 2017

A \(\ge\) |x2 - x - x + 1 + 7| + 2017

A\(\ge\) |(x - 1)2 + 7| + 2017

A\(\ge\) (x - 1)2 + 2024

Dấu "=" xảy ra khi x - 1 \(\ge\)0; x + 5 \(\ge\)0

=> x \(\ge\)1; x \(\ge\)-5

=> x \(\ge\)1

Vậy GTNN của A là 2024 khi x = 1

16 tháng 12 2016

cảm ơn bạn

12 tháng 7 2017

 \(A=2\left|x+1\right|-2x-4\)đạt GTNN <=> \(2\left|x+1\right|\)có giá trị nhỏ nhất

Mả \(\left|x+1\right|\ge0\forall x\in R\Rightarrow x+1=0\Rightarrow x=-1\)

\(\Rightarrow A=2.\left(-1+1\right)-2.\left(-1\right)-4=-2\)

Ta thấy \(2\left|x+1\right|=0\Rightarrow2x=-2\Rightarrow2\left|x+1\right|-2x=2\)

\(\Rightarrow2\left(x+1\right)-2x=2\Leftrightarrow2x+2-2x=2\)\(\Rightarrow x=1\)

Vậy \(x\in\left\{1;-1\right\}\)thì \(A\)có GTNN.

2 tháng 9 2019

A = |x+3| + |x-5|

A = |x+3| + |5-x| >= |x+3+5-x| = 8

Dấu "=" xảy ra <=> (x+3)(5-x) >=0

=> x >= -3; x <= 5 hoặc x<= -3;x>=5 (không xảy ra)

Vậy Min A = 8 khi -3<=x<=5

2 tháng 9 2019

   A=|x+3|+|x-5|

     =|x+3|+|5-x|> hoặc bằng |x+3+5-x|=8

    (Mình chỉ bt làm đến đây thôi, xin lỗi bạn nha!!!

9 tháng 2 2016

Ta có [x-y+5]=0 và [x-1]=0

             ta đc [x-1]=0=>x=1

                 vậy [x-y+5]=0 <=> [1-y+5]=0 <=> [6-y]=0

                                 =>y=6

                    Vậy giá trị của y là 6

6 tháng 4 2017

Ta có |x+1| \(\ge\)0 với \(\forall\)x

Dấu "=" xảy ra \(\Leftrightarrow\)x+1=0 \(\Leftrightarrow\)x= -1

=> A nhỏ nhất \(\Leftrightarrow\)|x+1| nhỏ nhất hay |x+1|=0 \(\Leftrightarrow\)x+1=0 \(\Leftrightarrow\)x=-1

=> A= 0-15=-15

Vậy giá trị nhỏ nhất của A là -15

24 tháng 3 2019

\(A=|x+1|+5\ge5\forall x\)

=> Min A = 5 tại \(|x+1|=0\Rightarrow x=-1\)

\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\)

Ta có: \(x^2+3\ge3\forall x\)

Min x2 + 3 = 3 tại x = 0

Khi đó: Max B = 1+ 12/3 = 5 tại x = 0

=.= hk tốt!!

|x+1 lớn hơn hoặc bằng 0 

=> |x+1|+5 lớn hơn hoặc bằng 5

Dấu = xảy ra khi x+1=0 <=> x=-1

Vậy Min A = 5 khi x=-1