Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-2001\right|+\left|x-1\right|\)
\(=\left|x-2001\right|+\left|1-x\right|\)
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2001\right|+\left|1-x\right|\ge\left|x-2001+1-x\right|=2000\)
\(\Rightarrow A\ge2000\)
Dấu = khi \(\begin{cases}x-2001\le0\\x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\le2001\\x\ge1\end{cases}\)\(\Rightarrow1\le x\le2001\)
Vậy MinA=2000 khi \(1\le x\le2001\)
Ta có:
\(\left|x+5\right|\ge x+5\)
\(\Leftrightarrow\left|x+5\right|+2-x\ge x+5+2-x\)
\(\Leftrightarrow\left|x+5\right|+2-x\ge7\)
\(\Leftrightarrow A\ge7\)
Vậy \(MinA=7\) đạt được khi \(x+5\ge0\Leftrightarrow x\ge-5\)
\(A=|x-2006|+|2007-x|\ge|x-2006+2007-x|=1\)
Dấu "=" xảy ra khi: \(\left(x-2006\right)\left(2007-x\right)\ge0\Rightarrow\left(x-2006\right)\left(x-2007\right)\le0\)
Mà \(x-2006>x-2007\Rightarrow\hept{\begin{cases}x-2006\ge0\\x-2007\le0\end{cases}\Rightarrow2006\le x\le2007}\)
Vậy GTNN của A là 1 khi \(2006\le x\le2007\)
Chúc bạn học tốt.
\(A=\left|x-2018\right|+\left|x-2019\right|\)
\(=\left|\left(x-2018\right)+\left(2019-x\right)\right|\)
\(=\left|1\right|=1\)
Vậy \(A_{min}=1\Leftrightarrow\left(x-2018\right)\left(2019-x\right)\ge0\)
\(\Leftrightarrow2018\le x\le2019\)
vì vế trái mỗi số luôn lớn hơn hoặc bằng 0 nên tổng lớn hơn hoặc bằng 0
=>5x-10 dương=>x dương x>2
vì x dương như lập luận thì có thể phá dấu
x+1+x-2+x+7=5x-10
3x+6=5x-10
3x=5x-10-6
2x=16
x=8
chúc học tốt
\(Min\)\(A=100\)
khi và chỉ khi \(\orbr{\begin{cases}x=102\\x=2\end{cases}}\)
GTNN của A là 7