Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(A=\left|2x-2\right|+\left|2x-2019\right|\ge\left|2-2x+2x-2019\right|=\left|2-2019\right|=2017\)
Để A đạt GTNN là 2017 <=> \(\left(2-2x\right)\left(2x-2019\right)\ge0\Rightarrow1\le x\le\frac{2019}{2}\)
b ) \(\left|2x-4\right|-\left|6-3x\right|=-1\)
\(\Leftrightarrow2\left|x-2\right|-3\left|x-2\right|=-1\)
\(\Leftrightarrow-\left|x-2\right|=-1\)
\(\Rightarrow\left|x-2\right|=1\)
\(\Rightarrow x=1;3\)
Mà x lớn nhất => x = 3
ta có a=3-x(1-2x)-(x-1)(x+2)=3-x+2x^2 -x^2-x+2=x^2-2x+5=(x^2 -2x+1)+4=(x-1)2+4< hoặc =4 <=>gtnn của a là 4 khi x-1=0 =>x=1
a) ta có |1-2x|>=0
=>3.|1-2x|>=0
=>A>=0-5
A>=-5
dấu "=" xảy ra kh và chỉ khi 1-2x=0
2x=1
x=1/2
Vậy GTNN của A=-5 khi x=1/2
b)ta có -|2-3x|<=0
=>B<=3/4-0
B<=3/4
dấu "=" xảy ra khi và chỉ khi 2-3x=0
3x=2
x=2/3
Vậy GTLN của B=3/4 khi x=2/3
A = (x - 1,5)2 + 2,25
Vì (x - 1,5)2 ≥ 0 ∀x
GTNN A là 2,25 tại x = 1,5
\(A=x^2-3x+5\)
\(A=x^2-3x+\frac{9}{4}+\frac{11}{4}\)
\(A=\left(x^2-3x+\frac{9}{4}\right)+\frac{11}{4}\)
\(A=\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2\right]+\frac{11}{4}\)
\(A=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}.\)
Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\) \(\forall x.\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\) \(\ge\frac{11}{4}\forall x\)
\(\Rightarrow A\ge\frac{11}{4}.\)
Dấu '' = '' xảy ra khi:
\(\left(x-\frac{3}{2}\right)^2=0\)
\(\Rightarrow x-\frac{3}{2}=0\)
\(\Rightarrow x=\frac{3}{2}.\)
Vậy \(MIN_A=\frac{11}{4}\) khi \(x=\frac{3}{2}.\)
Chúc bạn học tốt!
\(A=\left(2x+\frac{1}{3}\right)^4-1\) . Có: \(\left(2x+\frac{1}{3}\right)\ge0\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
Dấu = xảy ra khi: \(2x+\frac{1}{3}=0\)
\(\Rightarrow2x=-\frac{1}{3}\)
\(\Rightarrow x=-\frac{1}{3}:2=-\frac{1}{6}\)
Vậy: \(Min_A=-1\) tại \(x=-\frac{1}{6}\)
Để M có giá trị nguyên thì x - 2 chia hết cho x + 3
=> (x + 3) - 5 chia hét cho x + 3
=> 5 chia hết cho x + 3
=> x + 3 thuộc Ư(5) = {-1;1;-5;5}
Ta có:
x + 3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |