K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)

\(A=x^2-3x+5=x^2-3x+\left(1,5\right)^2+2,75\\ A=\left(x-1,5\right)^2+2,75\ge2,75\)

đẳng thức xảy ra khi x-1,5=0 => x=1,5

vậy GTNN của A là 3,75 tại x=1,5

b)

\(B=\left(2x-1\right)^2+\left(x+2\right)^2\\ B=4x^2-4x+1+x^2+4x+4\\ B=5x^2+5\ge5\)

đẳng thức xảy ra khi x=0

vậy GTNN của B là 5 tại x=0

c)

\(C=\left(x+3\right)\left(x-11\right)+2003\\ C=x^2-8x-33+2003\\ C=x^2-2.4x+16+1954\\ C=\left(x-4\right)^2+1954\ge1954\)

đẳng thức xảy ra khi x-4=0 => x=4

d)

\(D=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)\\ D=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\\ D=\left(x^2-7x\right)^2-100\ge-100\)

đẳng thức xảy ra khi:

\(x^2-7x=0\Rightarrow x\left(x-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)

vậy GTNN của D là -100 tại x=0 hoặc x=7

29 tháng 8 2017

a) \(A=x^2-3x+5=x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)

ta có : \(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\) với mọi \(x\)

\(\Rightarrow\) GTNN của \(A\)\(\dfrac{11}{4}\) khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

vậy GTNN của A là \(\dfrac{11}{4}\) khi \(x=\dfrac{3}{2}\)

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4\)

\(=5x^2+5\)

ta có : \(x^2\ge0\) với mọi \(x\) \(\Rightarrow5x^2+5\ge5\) với mọi \(x\)

\(\Rightarrow\) GTNN của B là 5 khi \(5x^2=0\Leftrightarrow x=0\)

vậy GTNN của B là 5 khi \(x=0\)

c) \(C=\left(x+3\right)\left(x-11\right)+2003=x^2-11x+3x-33+2003\)

\(=x^2-8x+16+1954=\left(x-4\right)^2+1954\)

ta có : \(\left(x-4\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\left(x-4\right)^2+1954\ge1954\) với mọi \(x\)

\(\Rightarrow\) GTNN của C là 1954 khi \(\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)

vậy GTNN của C là 1954 khi \(x=4\)

d) câu này đề sai thì phải

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

2 tháng 9 2018

\(A=x^2-3x+5\)

\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)

Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)

2 tháng 9 2018

a) \(A=x^2-3x+5\)

\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\("="\Leftrightarrow x=5\Rightarrow x=0;5\)

c) \(C=4x-x^2+3\)

\("="\Leftrightarrow x=7\Rightarrow x=2;7\)

d) \(D=x^4+x^2+2\)

\("="\Leftrightarrow x=2\Rightarrow x=0;2\)

15 tháng 8 2020

a) \(\left(x+5\right)^2-\left(x-5\right)^2-20x+2\)

\(=x^2+10x+25-x^2+10x-25-20x+2\)

\(=2\) không phụ thuộc vào \(x\)

b) \(\left(x+3\right)\left(x-5\right)-\left(x-1\right)^2\)

\(=x^2-2x-15-x^2+2x-1\)

\(=-16\) không phụ thuộc vào \(x\)

c) \(\left(3x+2\right)\left(x-2\right)-x\left(3x-5\right)+8\)

\(=3x^2-4x-4-3x^2+5x+8\)

\(=x+8\) câu này đề sai.

d) \(2.\left(3x+1\right)\left(2x+5\right)-6x.\left(2x+4\right)-10\left(x-1\right)\)

\(=2.\left(6x^2+17x+5\right)-\left(12x^2+24x\right)-10x+10\)

\(=12x^2+34x+10-12x^2-24x-10x+10\)

\(=20\) không phụ thuộc vào \(x\)

15 tháng 8 2020

a) ( x + 5 )2 - ( x - 5 )2 - 20x + 2 

= x2 + 10x + 25 - ( x2 - 10x + 25 ) - 20x + 2

= x2 + 10x + 25 - x2 + 10x - 25 - 20x + 2

= 2 ( đpcm )

b) ( x + 3 )( x - 5 ) - ( x - 1 )2

= x2 - 2x - 15 - ( x2 - 2x + 1 )

= x2 - 2x - 15 - x2 + 2x - 1

= -16 ( đpcm )

c) ( 3x + 2 )( x - 2 ) - x( 3x - 5 ) + 8

= 3x2 - 4x - 4 - 3x2 + 5x + 8

= x + 4 ( lỗi đề )

d) 2( 3x + 1 )( 2x + 5 ) - 6x( 2x + 4 ) - 10( x - 1 )

= 2( 6x2 + 17x + 5 ) - 12x2 - 24x - 10x + 10

= 12x2 + 34x + 10 - 12x2 - 24x - 10x + 10

= 20 ( đpcm )

8 tháng 9 2023

Bạn xem lại đề nhé.

a) \(A=x^2+5y^2+2xy-4x-8y+2015\)

 

\(A=x^2-4x+4-2y\left(x-2\right)+y^2+2011+4y^2\)

\(A=\left(x-2\right)^2-2y\left(x-2\right)+y^2+2011+4y^2\)

\(A=\left(x-2-y\right)^2+4y^2+2011\)

Vì \(\left(x-y-2\right)^2\ge0;4y^2\ge0\)

\(\Rightarrow A_{min}=2011\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}x-y-2=0\\4y^2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Bài 1: Rút gọn các biểu thức sau: a) \(3x^2\) - 2x( 5+ 1,5x) +10 b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x) c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\) Bài 2: Tìm x, biết: a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24 b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\) c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\) d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\) Bài 3: Tính giá trị của các biểu...
Đọc tiếp

Bài 1: Rút gọn các biểu thức sau:

a) \(3x^2\) - 2x( 5+ 1,5x) +10

b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x)

c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)

Bài 2: Tìm x, biết:

a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24

b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\)

c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)

d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\)

Bài 3: Tính giá trị của các biểu thức sau:

a)\(A=x^2\left(x+y\right)-y\left(x^2+y^2\right)+2002\) Với \(x=1;y=-1\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)-\dfrac{11}{20}\) Với \(x=-0,6;y=-0,75\)

Bài 4: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị biến:

a) \(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)

b) \(z\left(y-x\right)+y\left(z-x\right)+x\left(y+z\right)-2yz+100\)

c) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)

Bài 5: Tính giá trị của biểu thức:

a) \(A=\left(x-3\right)\left(x-7\right)-\left(2x-5\right)\left(x-1\right)\) Với \(x=0;x=1;x=-1\)

b) \(B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\) Với \(\left|x\right|=2\)

c) \(C=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) Với \(x=1;y=1;z=\left|1\right|\)

7
AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)

\(=10-10x=10(1-x)\)

b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)

\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)

\(=-7x^2+7x=7x(1-x)\)

c)

\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)

\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)

\(=\left\{3-x-5[9x-2]\right\}(-2x)\)

\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)

\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)

\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)

b)

\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)

\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)

\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)

\(2x^2+3(x^2-1)=5x(x+1)\)

13 tháng 7 2017

Akai HarumaĐoàn Đức HiếuNguyễn Huy TúHồng Phúc NguyễnTuấn Anh Phan NguyễnAn Trịnh Hữu help me túi mình đi học roài

29 tháng 8 2018

\(A=x^2-4x-x\left(x-4\right)-15\)

\(=x^2-4x-x^2+4x-15=-15\)   =>  đpcm

\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)

\(=5x^3-5x^2-5x^3+5x^2-13=-13\)   =>   đpcm

\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)

\(=-3x^2+15x+3x^2-12x-3x+7=7\)   =>   đpcm

29 tháng 8 2018

\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)

\(=7x^2-35x+21-7x^2+35x-14=7\)  =>   đpcm

\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)

\(=4x^3-20x-4x^3+20x+20=20\)    =>    đpcm

\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) =>   đpcm

11 tháng 12 2017

1,

a,\(2x\left(3x^2-5x+3\right)\)

\(=6x^3-10x^2+6x\)

b,\(-2x\left(x^2+5x-3\right)\)

\(=-2x^3-10x^2+6x\)

c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)

\(=-x^4+2x^2-\dfrac{3}{2}x\)

Bài 2:

a) \(\left(2x-1\right)\left(x^2-5-4\right)\)

\(=\left(2x-1\right)\left(x^2-9\right)\)

\(=2x^3-18x-x^2+9\)

b) \(-\left(5x-4\right)\left(2x+3\right)\)

\(=-\left(10x^2+15x-8x-12\right)\)

\(=-10x^2-7x+12\)

c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)

\(=8x^3-y^3\)