Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : y = \(\dfrac{5x+9}{x+3}\)
Để y nhận giá trị nguyên thì: 5x + 9 \(⋮\) x + 3
=> 5. ( x + 3 ) + 9 - 15 \(⋮\) x + 3
=> 5. ( x + 3 ) - 6 \(⋮\) x + 3
=> 6 \(⋮\) x + 3 ( vì 5. ( x + 3 ) \(⋮\) x + 3 )
=> x + 3 \(\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
=> \(x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)
Vậy : \(x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\) thì y nhận giá trị nguyên.
\(a,\) Ta có \(y=\frac{5x+9}{x+3}\)
Để \(y\) nhận giá trị nguyên thì : \(5x+9⋮x+3\)
\(\Rightarrow5\left(x+3\right)+9-15⋮x+3\)
\(\Rightarrow5\left(x+3\right)-6⋮x+3\)
\(\Rightarrow-6⋮x+3\)
\(\Rightarrow6⋮x+3\)
\(\Rightarrow x+3\inƯ_{\left(6\right)}\)
\(\Rightarrow x+3=\left(-6,-3,-2,-1,1,2,3,6\right)\) Máy tớ ko viết được ngoặc khép thông cảm nha
\(\Rightarrow x=\left(-9,-6,-5,-4,-2,-1,0,3\right)\)
Quy đồng: mẫu số chung : 72
\(\frac{1}{18}=\frac{4}{72}\)
\(\frac{x}{12}=\frac{x}{72}\)
\(\frac{y}{9}=\frac{y}{72}\)
\(\frac{1}{4}=\frac{18}{72}\)
=>\(\frac{1}{12}=\frac{6}{72}\)
=>\(\frac{1}{9}=\frac{8}{72}\)
so sánh: \(\frac{1}{12}< \frac{1}{9}\) vì \(\frac{6}{72}< \frac{8}{72}\)
\(\Rightarrow x=1\) ; \(y=1\)