Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :
\(A=\frac{2}{6-x}\). Để A có GTLN => 6 - x có GTNN và 6 - x > 0
Mà \(6-x\ne0\Rightarrow6-x=1\Rightarrow x=5\)
\(\Rightarrow A=\frac{2}{1}=2\) khi x = 5
b, \(B=\frac{8-x}{x-3}=\frac{-\left(x-3\right)+5}{x-3}=-1+\frac{5}{x-3}\)
Để B có GTNN \(\Rightarrow\frac{5}{x-3}\) có GTNN => x-3 có GTNN và x - 3 < 0
Mà \(x-3\ne0\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=-1+\frac{5}{-1}=-6\) khi x = 2
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
b) B=x-!x!
B=0 nếu x>=0
B=2x nếu x<0
=> GTLN của B=0 =0 khi x >=0
a) A=!2x+6!+!2x+8!\(\ge\)I(2x+6)+(2x+8)! đảng thúc khi 2x+6 khác dau voi (2x+8)
A>=!(2x+6)-(2x+8)!=!+-2!=2
2x+6 khác dau voi (2x+8) khi -4<=x<-3
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá