Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có \(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}=\frac{\sqrt{x}-2+4}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}=1+\frac{4}{\sqrt{x}-2}\)
Để A đạt giá trị nguyên thì: \(\sqrt{x}-2\in U\left(4\right)\)
TH1: \(\sqrt{x}-2=1\Rightarrow x=9\)
TH2: \(\sqrt{x}-2=-1\Rightarrow x=1\)
TH3: \(\sqrt{x}-2=2\Rightarrow x=16\)
TH4: \(\sqrt{x}-2=-2\Rightarrow x=0\)
TH5: \(\sqrt{x}-2=4\Rightarrow x=36\)
TH6: \(\sqrt{x}-2=-4\Rightarrow\) k tồn tại x
Vậy:...
a) x khác 2
b) với x<2
c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)
x-2=(-7,-1,1,7)
x=(-5,1,3,9)
a) đk kiện xác định là mẫu khác 0
=> x-2 khác o=> x khác 2
b)
tử số luôn dương mọi x
vậy để A âm thì mẫu số phải (-)
=> x-2<0=> x<2
c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu
cụ thể
x^2-2x+2x-4+4+3
ghép
x(x-2)+2(x-2)+7
như vậy chỉ còn mỗi số 7 không chia hết cho x-2
vậy x-2 là ước của 7=(+-1,+-7) ok
Để \(\frac{x^2+7}{x+1}\)nhận giá trị nguyên thì \(x^2+7⋮x+1\left(1\right)\)
+)Ta có:\(x+1⋮x+1\)
\(\Rightarrow x.\left(x+1\right)⋮x+1\)
\(\Rightarrow x^2+x⋮x+1\left(2\right)\)
+)Từ (1) và (2)
\(\Rightarrow\left(x^2+x\right)-\left(x^2+7\right)⋮x+1\)
\(\Rightarrow x^2+x-x^2-7⋮x+1\)
\(\Rightarrow x-7⋮x+1\left(3\right)\)
+)Ta lại có:\(x+1⋮x+1\left(4\right)\)
+)Từ (3) và (4)
\(\Rightarrow\left(x+1\right)-\left(x-7\right)⋮x+1\)
\(\Rightarrow x+1-x+7⋮x+1\)
\(\Rightarrow8⋮x+1\)
\(\Rightarrow x+1\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Rightarrow x\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\in Z\)
Vậy \(x\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)
Chúc bn học tốt